|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Vectorspace Dimensionality" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "markdown", |
| 12 | + "metadata": {}, |
| 13 | + "source": [ |
| 14 | + "A function to compute the number of dimensions a set of vectors (arranged as columns in a matrix) spans." |
| 15 | + ] |
| 16 | + }, |
| 17 | + { |
| 18 | + "cell_type": "markdown", |
| 19 | + "metadata": {}, |
| 20 | + "source": [ |
| 21 | + "> from mlxtend.math import vectorspace_dimensionality" |
| 22 | + ] |
| 23 | + }, |
| 24 | + { |
| 25 | + "cell_type": "markdown", |
| 26 | + "metadata": {}, |
| 27 | + "source": [ |
| 28 | + "## Overview" |
| 29 | + ] |
| 30 | + }, |
| 31 | + { |
| 32 | + "cell_type": "markdown", |
| 33 | + "metadata": {}, |
| 34 | + "source": [ |
| 35 | + "Given a set of vectors, arranged as columns in a matrix, the `vectorspace_dimensionality` computes the number of dimensions (i.e., hyper-volume) that the vectorspace spans using the Gram-Schmidt process [1]. In particular, since the Gram-Schmidt process yields vectors that are zero or normalized to 1 (i.e., an orthonormal vectorset if the input was an orthogonal vectorset), the sum of the vector norms corresponds to the number of dimensions of a vectorset. " |
| 36 | + ] |
| 37 | + }, |
| 38 | + { |
| 39 | + "cell_type": "markdown", |
| 40 | + "metadata": {}, |
| 41 | + "source": [ |
| 42 | + "### References\n", |
| 43 | + "\n", |
| 44 | + "- [1] https://en.wikipedia.org/wiki/Gram–Schmidt_process" |
| 45 | + ] |
| 46 | + }, |
| 47 | + { |
| 48 | + "cell_type": "markdown", |
| 49 | + "metadata": {}, |
| 50 | + "source": [ |
| 51 | + "## Example 1 - Compute the dimensions of a vectorspace" |
| 52 | + ] |
| 53 | + }, |
| 54 | + { |
| 55 | + "cell_type": "markdown", |
| 56 | + "metadata": {}, |
| 57 | + "source": [ |
| 58 | + "Let's assume we have the two basis vectors $x=[1 \\;\\;\\; 0]^T$ and $y=[0\\;\\;\\; 1]^T$ as columns in a matrix. Due to the linear independence of the two vectors, the space that they span is naturally a plane (2D space):" |
| 59 | + ] |
| 60 | + }, |
| 61 | + { |
| 62 | + "cell_type": "code", |
| 63 | + "execution_count": 1, |
| 64 | + "metadata": {}, |
| 65 | + "outputs": [ |
| 66 | + { |
| 67 | + "data": { |
| 68 | + "text/plain": [ |
| 69 | + "2" |
| 70 | + ] |
| 71 | + }, |
| 72 | + "execution_count": 1, |
| 73 | + "metadata": {}, |
| 74 | + "output_type": "execute_result" |
| 75 | + } |
| 76 | + ], |
| 77 | + "source": [ |
| 78 | + "import numpy as np\n", |
| 79 | + "from mlxtend.math import vectorspace_dimensionality\n", |
| 80 | + "\n", |
| 81 | + "\n", |
| 82 | + "a = np.array([[1, 0],\n", |
| 83 | + " [0, 1]])\n", |
| 84 | + "\n", |
| 85 | + "vectorspace_dimensionality(a)" |
| 86 | + ] |
| 87 | + }, |
| 88 | + { |
| 89 | + "cell_type": "markdown", |
| 90 | + "metadata": {}, |
| 91 | + "source": [ |
| 92 | + "However, if one vector is a linear combination of the other, it's intuitive to see that the space the vectorset describes is merely a line, aka a 1D space:" |
| 93 | + ] |
| 94 | + }, |
| 95 | + { |
| 96 | + "cell_type": "code", |
| 97 | + "execution_count": 2, |
| 98 | + "metadata": {}, |
| 99 | + "outputs": [ |
| 100 | + { |
| 101 | + "data": { |
| 102 | + "text/plain": [ |
| 103 | + "2" |
| 104 | + ] |
| 105 | + }, |
| 106 | + "execution_count": 2, |
| 107 | + "metadata": {}, |
| 108 | + "output_type": "execute_result" |
| 109 | + } |
| 110 | + ], |
| 111 | + "source": [ |
| 112 | + "b = np.array([[1, 2],\n", |
| 113 | + " [0, 0]])\n", |
| 114 | + "\n", |
| 115 | + "vectorspace_dimensionality(a)" |
| 116 | + ] |
| 117 | + }, |
| 118 | + { |
| 119 | + "cell_type": "markdown", |
| 120 | + "metadata": {}, |
| 121 | + "source": [ |
| 122 | + "If 3 vectors are all linearly independent of each other, the dimensionality of the vector space is a volume (i.e., a 3D space):" |
| 123 | + ] |
| 124 | + }, |
| 125 | + { |
| 126 | + "cell_type": "code", |
| 127 | + "execution_count": 3, |
| 128 | + "metadata": {}, |
| 129 | + "outputs": [ |
| 130 | + { |
| 131 | + "data": { |
| 132 | + "text/plain": [ |
| 133 | + "3" |
| 134 | + ] |
| 135 | + }, |
| 136 | + "execution_count": 3, |
| 137 | + "metadata": {}, |
| 138 | + "output_type": "execute_result" |
| 139 | + } |
| 140 | + ], |
| 141 | + "source": [ |
| 142 | + "d = np.array([[1, 9, 1],\n", |
| 143 | + " [3, 2, 2],\n", |
| 144 | + " [5, 4, 3]])\n", |
| 145 | + "\n", |
| 146 | + "vectorspace_dimensionality(d)" |
| 147 | + ] |
| 148 | + }, |
| 149 | + { |
| 150 | + "cell_type": "markdown", |
| 151 | + "metadata": {}, |
| 152 | + "source": [ |
| 153 | + "Again, if a pair of vectors is linearly dependent (here: the 1st and the 2nd row), this reduces the dimensionality by 1:" |
| 154 | + ] |
| 155 | + }, |
| 156 | + { |
| 157 | + "cell_type": "code", |
| 158 | + "execution_count": 4, |
| 159 | + "metadata": {}, |
| 160 | + "outputs": [ |
| 161 | + { |
| 162 | + "data": { |
| 163 | + "text/plain": [ |
| 164 | + "2" |
| 165 | + ] |
| 166 | + }, |
| 167 | + "execution_count": 4, |
| 168 | + "metadata": {}, |
| 169 | + "output_type": "execute_result" |
| 170 | + } |
| 171 | + ], |
| 172 | + "source": [ |
| 173 | + "c = np.array([[1, 2, 1],\n", |
| 174 | + " [3, 6, 2],\n", |
| 175 | + " [5, 10, 3]])\n", |
| 176 | + "\n", |
| 177 | + "vectorspace_dimensionality(c)" |
| 178 | + ] |
| 179 | + }, |
| 180 | + { |
| 181 | + "cell_type": "markdown", |
| 182 | + "metadata": {}, |
| 183 | + "source": [ |
| 184 | + "## API" |
| 185 | + ] |
| 186 | + }, |
| 187 | + { |
| 188 | + "cell_type": "code", |
| 189 | + "execution_count": 5, |
| 190 | + "metadata": {}, |
| 191 | + "outputs": [ |
| 192 | + { |
| 193 | + "name": "stdout", |
| 194 | + "output_type": "stream", |
| 195 | + "text": [ |
| 196 | + "## vectorspace_dimensionality\n", |
| 197 | + "\n", |
| 198 | + "*vectorspace_dimensionality(ary)*\n", |
| 199 | + "\n", |
| 200 | + "Computes the hyper-volume spanned by a vector set\n", |
| 201 | + "\n", |
| 202 | + "**Parameters**\n", |
| 203 | + "\n", |
| 204 | + "- `ary` : array-like, shape=[num_vectors, num_vectors]\n", |
| 205 | + "\n", |
| 206 | + " An orthogonal set of vectors (arranged as columns in a matrix)\n", |
| 207 | + "\n", |
| 208 | + "**Returns**\n", |
| 209 | + "\n", |
| 210 | + "- `dimensions` : int\n", |
| 211 | + "\n", |
| 212 | + " An integer indicating the \"dimensionality\" hyper-volume spanned by\n", |
| 213 | + " the vector set\n", |
| 214 | + "\n", |
| 215 | + "\n" |
| 216 | + ] |
| 217 | + } |
| 218 | + ], |
| 219 | + "source": [ |
| 220 | + "with open('../../api_modules/mlxtend.math/vectorspace_dimensionality.md', 'r') as f:\n", |
| 221 | + " print(f.read())" |
| 222 | + ] |
| 223 | + } |
| 224 | + ], |
| 225 | + "metadata": { |
| 226 | + "anaconda-cloud": {}, |
| 227 | + "kernelspec": { |
| 228 | + "display_name": "Python 3", |
| 229 | + "language": "python", |
| 230 | + "name": "python3" |
| 231 | + }, |
| 232 | + "language_info": { |
| 233 | + "codemirror_mode": { |
| 234 | + "name": "ipython", |
| 235 | + "version": 3 |
| 236 | + }, |
| 237 | + "file_extension": ".py", |
| 238 | + "mimetype": "text/x-python", |
| 239 | + "name": "python", |
| 240 | + "nbconvert_exporter": "python", |
| 241 | + "pygments_lexer": "ipython3", |
| 242 | + "version": "3.6.4" |
| 243 | + }, |
| 244 | + "toc": { |
| 245 | + "nav_menu": {}, |
| 246 | + "number_sections": true, |
| 247 | + "sideBar": true, |
| 248 | + "skip_h1_title": false, |
| 249 | + "title_cell": "Table of Contents", |
| 250 | + "title_sidebar": "Contents", |
| 251 | + "toc_cell": false, |
| 252 | + "toc_position": {}, |
| 253 | + "toc_section_display": true, |
| 254 | + "toc_window_display": false |
| 255 | + } |
| 256 | + }, |
| 257 | + "nbformat": 4, |
| 258 | + "nbformat_minor": 1 |
| 259 | +} |
0 commit comments