forked from mlabonne/llm-autoeval
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunpod.sh
152 lines (128 loc) · 5.61 KB
/
runpod.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#!/bin/bash
start=$(date +%s)
# Detect the number of NVIDIA GPUs and create a device string
gpu_count=$(nvidia-smi -L | wc -l)
if [ $gpu_count -eq 0 ]; then
echo "No NVIDIA GPUs detected. Exiting."
exit 1
fi
# Construct the CUDA device string
cuda_devices=""
for ((i=0; i<gpu_count; i++)); do
if [ $i -gt 0 ]; then
cuda_devices+=","
fi
cuda_devices+="$i"
done
# Install dependencies
apt update
apt install -y screen vim git-lfs
screen
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -- -y
source "$HOME/.cargo/env"
# Install common libraries
pip install -q requests accelerate sentencepiece pytablewriter einops protobuf
if [ "$DEBUG" == "True" ]; then
echo "Launch LLM AutoEval in debug mode"
fi
# Run evaluation
if [ "$BENCHMARK" == "nous" ]; then
git clone -b add-agieval https://github.com/dmahan93/lm-evaluation-harness
cd lm-evaluation-harness
pip install -e .
benchmark="agieval"
python main.py \
--model hf-causal \
--model_args pretrained=$MODEL,trust_remote_code=$TRUST_REMOTE_CODE \
--tasks agieval_aqua_rat,agieval_logiqa_en,agieval_lsat_ar,agieval_lsat_lr,agieval_lsat_rc,agieval_sat_en,agieval_sat_en_without_passage,agieval_sat_math \
--device cuda:$cuda_devices \
--batch_size auto \
--output_path ./${benchmark}.json
benchmark="gpt4all"
python main.py \
--model hf-causal \
--model_args pretrained=$MODEL,trust_remote_code=$TRUST_REMOTE_CODE \
--tasks hellaswag,openbookqa,winogrande,arc_easy,arc_challenge,boolq,piqa \
--device cuda:$cuda_devices \
--batch_size auto \
--output_path ./${benchmark}.json
benchmark="truthfulqa"
python main.py \
--model hf-causal \
--model_args pretrained=$MODEL,trust_remote_code=$TRUST_REMOTE_CODE \
--tasks truthfulqa_mc \
--device cuda:$cuda_devices \
--batch_size auto \
--output_path ./${benchmark}.json
benchmark="bigbench"
python main.py \
--model hf-causal \
--model_args pretrained=$MODEL,trust_remote_code=$TRUST_REMOTE_CODE \
--tasks bigbench_causal_judgement,bigbench_date_understanding,bigbench_disambiguation_qa,bigbench_geometric_shapes,bigbench_logical_deduction_five_objects,bigbench_logical_deduction_seven_objects,bigbench_logical_deduction_three_objects,bigbench_movie_recommendation,bigbench_navigate,bigbench_reasoning_about_colored_objects,bigbench_ruin_names,bigbench_salient_translation_error_detection,bigbench_snarks,bigbench_sports_understanding,bigbench_temporal_sequences,bigbench_tracking_shuffled_objects_five_objects,bigbench_tracking_shuffled_objects_seven_objects,bigbench_tracking_shuffled_objects_three_objects \
--device cuda:$cuda_devices \
--batch_size auto \
--output_path ./${benchmark}.json
end=$(date +%s)
echo "Elapsed Time: $(($end-$start)) seconds"
python ../llm-autoeval/main.py . $(($end-$start))
elif [ "$BENCHMARK" == "openllm" ]; then
git clone https://github.com/rmihaylov/lm-evaluation-harness.git
cd lm-evaluation-harness
pip install -e .
pip install langdetect immutabledict
pip install https://github.com/vllm-project/vllm/releases/download/v0.3.0/vllm-0.3.0+cu118-cp310-cp310-manylinux1_x86_64.whl
pip install transformers==4.1
benchmark="arc"
lm_eval --model vllm \
--model_args pretrained=${MODEL},dtype=auto,gpu_memory_utilization=0.8,trust_remote_code=$TRUST_REMOTE_CODE,max_model_len=$MAX_MODEL_LENGTH \
--tasks arc_challenge \
--num_fewshot 25 \
--batch_size auto \
--output_path ./${benchmark}.json
benchmark="hellaswag"
lm_eval --model vllm \
--model_args pretrained=${MODEL},dtype=auto,gpu_memory_utilization=0.8,trust_remote_code=$TRUST_REMOTE_CODE,max_model_len=$MAX_MODEL_LENGTH \
--tasks hellaswag \
--num_fewshot 10 \
--batch_size auto \
--output_path ./${benchmark}.json
# benchmark="mmlu"
# lm_eval --model vllm \
# --model_args pretrained=${MODEL},dtype=auto,gpu_memory_utilization=0.8,trust_remote_code=$TRUST_REMOTE_CODE,max_model_len=$MAX_MODEL_LENGTH \
# --tasks mmlu \
# --num_fewshot 5 \
# --batch_size auto \
# --verbosity DEBUG \
# --output_path ./${benchmark}.json
# benchmark="truthfulqa"
# lm_eval --model vllm \
# --model_args pretrained=${MODEL},dtype=auto,gpu_memory_utilization=0.8,trust_remote_code=$TRUST_REMOTE_CODE,max_model_len=$MAX_MODEL_LENGTH \
# --tasks truthfulqa \
# --num_fewshot 0 \
# --batch_size auto \
# --output_path ./${benchmark}.json
benchmark="winogrande"
lm_eval --model vllm \
--model_args pretrained=${MODEL},dtype=auto,gpu_memory_utilization=0.8,trust_remote_code=$TRUST_REMOTE_CODE,max_model_len=$MAX_MODEL_LENGTH \
--tasks winogrande \
--num_fewshot 5 \
--batch_size auto \
--output_path ./${benchmark}.json
benchmark="gsm8k"
lm_eval --model vllm \
--model_args pretrained=${MODEL},dtype=auto,gpu_memory_utilization=0.8,trust_remote_code=$TRUST_REMOTE_CODE,max_model_len=$MAX_MODEL_LENGTH \
--tasks gsm8k \
--num_fewshot 5 \
--batch_size auto \
--output_path ./${benchmark}.json
end=$(date +%s)
echo "Elapsed Time: $(($end-$start)) seconds"
cd /llm-autoeval/
python main.py lm-evaluation-harness/ $(($end-$start))
else
echo "Error: Invalid BENCHMARK value. Please set BENCHMARK to 'nous' or 'openllm'."
fi
if [ "$DEBUG" == "False" ]; then
runpodctl remove pod $RUNPOD_POD_ID
fi
sleep infinity