-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathevaluate.py
355 lines (308 loc) · 13 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
# -*- coding: utf-8 -*-
import cv2
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
import math
import importlib
import os
import argparse
import copy
import random
import sys
import json
from skimage import measure
from core.utils import create_random_shape_with_random_motion
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
import torch.utils.model_zoo as model_zoo
from torchvision import models
import torch.multiprocessing as mp
from torchvision import transforms
# My libs
from core.utils import Stack, ToTorchFormatTensor
from model.i3d import InceptionI3d
from scipy import linalg
parser = argparse.ArgumentParser(description="FuseFormer")
parser.add_argument("-v", "--video", type=str, required=False)
parser.add_argument("-m", "--mask", type=str, required=False)
parser.add_argument("-c", "--ckpt", type=str, required=True)
parser.add_argument("--model", type=str, default='fuseformer')
parser.add_argument("--dataset", type=str, default='davis')
parser.add_argument("--width", type=int, default=432)
parser.add_argument("--height", type=int, default=240)
parser.add_argument("--outw", type=int, default=432)
parser.add_argument("--outh", type=int, default=240)
parser.add_argument("--step", type=int, default=10)
parser.add_argument("--num_ref", type=int, default=-1)
parser.add_argument("--neighbor_stride", type=int, default=5)
parser.add_argument("--savefps", type=int, default=24)
parser.add_argument("--use_mp4", action='store_true')
parser.add_argument("--dump_results", action='store_true')
args = parser.parse_args()
w, h = args.width, args.height
ref_length = args.step # ref_step
num_ref = args.num_ref
neighbor_stride = args.neighbor_stride
default_fps = args.savefps
i3d_model = None
_to_tensors = transforms.Compose([
Stack(),
ToTorchFormatTensor()])
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
"""Numpy implementation of the Frechet Distance.
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
and X_2 ~ N(mu_2, C_2) is
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
Stable version by Dougal J. Sutherland.
Params:
-- mu1 : Numpy array containing the activations of a layer of the
inception net (like returned by the function 'get_predictions')
for generated samples.
-- mu2 : The sample mean over activations, precalculated on an
representive data set.
-- sigma1: The covariance matrix over activations for generated samples.
-- sigma2: The covariance matrix over activations, precalculated on an
representive data set.
Returns:
-- : The Frechet Distance.
"""
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert mu1.shape == mu2.shape, \
'Training and test mean vectors have different lengths'
assert sigma1.shape == sigma2.shape, \
'Training and test covariances have different dimensions'
diff = mu1 - mu2
# Product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = ('fid calculation produces singular product; '
'adding %s to diagonal of cov estimates') % eps
print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError('Imaginary component {}'.format(m))
covmean = covmean.real
tr_covmean = np.trace(covmean)
return (diff.dot(diff) + np.trace(sigma1) + # NOQA
np.trace(sigma2) - 2 * tr_covmean)
def get_fid_score(real_activations, fake_activations):
"""
Given two distribution of features, compute the FID score between them
"""
m1 = np.mean(real_activations, axis=0)
m2 = np.mean(fake_activations, axis=0)
s1 = np.cov(real_activations, rowvar=False)
s2 = np.cov(fake_activations, rowvar=False)
return calculate_frechet_distance(m1, s1, m2, s2)
def init_i3d_model():
global i3d_model
if i3d_model is not None:
return
print("[Loading I3D model for FID score ..]")
i3d_model_weight = './checkpoints/i3d_rgb_imagenet.pt'
#if not os.path.exists(i3d_model_weight):
# os.mkdir(os.path.dirname(i3d_model_weight))
# urllib.request.urlretrieve('http://www.cmlab.csie.ntu.edu.tw/~zhe2325138/i3d_rgb_imagenet.pt', i3d_model_weight)
i3d_model = InceptionI3d(400, in_channels=3, final_endpoint='Logits')
i3d_model.load_state_dict(torch.load(i3d_model_weight))
i3d_model.to(torch.device('cuda:0'))
def get_i3d_activations(batched_video, target_endpoint='Logits', flatten=True, grad_enabled=False):
"""
Get features from i3d model and flatten them to 1d feature,
valid target endpoints are defined in InceptionI3d.VALID_ENDPOINTS
VALID_ENDPOINTS = (
'Conv3d_1a_7x7',
'MaxPool3d_2a_3x3',
'Conv3d_2b_1x1',
'Conv3d_2c_3x3',
'MaxPool3d_3a_3x3',
'Mixed_3b',
'Mixed_3c',
'MaxPool3d_4a_3x3',
'Mixed_4b',
'Mixed_4c',
'Mixed_4d',
'Mixed_4e',
'Mixed_4f',
'MaxPool3d_5a_2x2',
'Mixed_5b',
'Mixed_5c',
'Logits',
'Predictions',
)
"""
init_i3d_model()
with torch.set_grad_enabled(grad_enabled):
feat = i3d_model.extract_features(batched_video.transpose(1, 2), target_endpoint)
if flatten:
feat = feat.view(feat.size(0), -1)
return feat
def get_frame_mask_list(args):
if args.dataset == 'davis':
data_root = "./data/DATASET_DAVIS"
mask_dir = "./data/random_mask_stationary_w432_h240"
frame_dir = os.path.join(data_root, "JPEGImages", "480p")
elif args.dataset == 'youtubevos':
data_root = "./data/YouTubeVOS/"
mask_dir = "./data/random_mask_stationary_youtube_w432_h240"
frame_dir = os.path.join(data_root, "test_all_frames", "JPEGImages")
mask_folder = sorted(os.listdir(mask_dir))
mask_list = [os.path.join(mask_dir, name) for name in mask_folder]
frame_folder = sorted(os.listdir(frame_dir))
frame_list = [os.path.join(frame_dir, name) for name in frame_folder]
print("[Finish building dataset {}]".format(args.dataset))
return frame_list, mask_list
# sample reference frames from the whole video
def get_ref_index(f, neighbor_ids, length):
ref_index = []
if num_ref == -1:
for i in range(0, length, ref_length):
if not i in neighbor_ids:
ref_index.append(i)
else:
start_idx = max(0, f - ref_length * (num_ref//2))
end_idx = min(length, f + ref_length * (num_ref//2))
for i in range(start_idx, end_idx+1, ref_length):
if not i in neighbor_ids:
ref_index.append(i)
if len(ref_index) >= num_ref:
break
return ref_index
# read frame-wise masks
def read_mask(mpath):
masks = []
mnames = os.listdir(mpath)
mnames.sort()
for m in mnames:
m = Image.open(os.path.join(mpath, m))
m = m.resize((w, h), Image.NEAREST)
m = np.array(m.convert('L'))
m = np.array(m > 0).astype(np.uint8)
m = cv2.dilate(m, cv2.getStructuringElement(
cv2.MORPH_CROSS, (3, 3)), iterations=4)
masks.append(Image.fromarray(m*255))
return masks
# read frames from video
def read_frame_from_videos(vname):
lst = os.listdir(vname)
lst.sort()
fr_lst = [vname+'/'+name for name in lst]
frames = []
for fr in fr_lst:
image = cv2.imread(fr)
image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
frames.append(image.resize((w,h)))
return frames
def create_square_masks(video_length, h, w):
masks = []
for i in range(video_length):
this_mask = np.zeros((h, w))
this_mask[int(h/4):h-int(h/4), int(w/4):w-int(w/4)] = 1
this_mask = Image.fromarray((this_mask*255).astype(np.uint8))
masks.append(this_mask.convert('L'))
return masks
def get_res_list(dir):
folders = sorted(os.listdir(dir))
return [os.path.join(dir, f) for f in folders]
def main_worker():
# set up models
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net = importlib.import_module('model.' + args.model)
model = net.InpaintGenerator().to(device)
model_path = args.ckpt
data = torch.load(args.ckpt, map_location=device)
model.load_state_dict(data)
print('loading from: {}'.format(args.ckpt))
model.eval()
frame_list, mask_list = get_frame_mask_list(args)
assert len(frame_list) == len(mask_list)
print(len(frame_list))
print(len(mask_list))
video_num = len(frame_list)
ssim_all, psnr_all, len_all = 0., 0., 0.
s_psnr_all = 0.
video_length_all = 0
vfid = 0.
output_i3d_activations = []
real_i3d_activations = []
model_name = args.ckpt.split("/")[-1].split(".")[0]
dump_results_dir = model_name+"_scratch_davis_results"
if args.dump_results:
if not os.path.exists(dump_results_dir):
os.mkdir(dump_results_dir)
for video_no in range(video_num):
print("[Processing: {}]".format(frame_list[video_no].split("/")[-1]))
print(video_no)
if args.dump_results:
this_dump_results_dir = os.path.join(dump_results_dir, frame_list[video_no].split("/")[-1])
os.makedirs(this_dump_results_dir, exist_ok=True)
frames_PIL = read_frame_from_videos(frame_list[video_no])
video_length = len(frames_PIL)
imgs = _to_tensors(frames_PIL).unsqueeze(0)*2-1
frames = [np.array(f).astype(np.uint8) for f in frames_PIL]
masks = read_mask(mask_list[video_no])
binary_masks = [np.expand_dims((np.array(m) != 0).astype(np.uint8), 2) for m in masks]
masks = _to_tensors(masks).unsqueeze(0)
imgs, masks = imgs.to(device), masks.to(device)
comp_frames = [None]*video_length
for f in range(0, video_length, neighbor_stride):
neighbor_ids = [i for i in range(max(0, f-neighbor_stride), min(video_length, f+neighbor_stride+1))]
ref_ids = get_ref_index(f, neighbor_ids, video_length)
len_temp = len(neighbor_ids) + len(ref_ids)
selected_imgs = imgs[:1, neighbor_ids+ref_ids, :, :, :]
selected_masks = masks[:1, neighbor_ids+ref_ids, :, :, :]
print(len_temp)
with torch.no_grad():
input_imgs = selected_imgs*(1-selected_masks)
pred_img = model(input_imgs)
pred_img = (pred_img + 1) / 2
pred_img = pred_img.cpu().permute(0, 2, 3, 1).numpy()*255
for i in range(len(neighbor_ids)):
idx = neighbor_ids[i]
img = np.array(pred_img[i]).astype(
np.uint8)*binary_masks[idx] + frames[idx] * (1-binary_masks[idx])
if comp_frames[idx] is None:
comp_frames[idx] = img
else:
comp_frames[idx] = comp_frames[idx].astype(
np.float32)*0.5 + img.astype(np.float32)*0.5
ssim, psnr, s_psnr = 0., 0., 0.
comp_PIL = []
for f in range(video_length):
comp = comp_frames[f]
comp = cv2.cvtColor(np.array(comp), cv2.COLOR_BGR2RGB)
cv2.imwrite("tmpp.png", comp)
new_comp = cv2.imread("tmpp.png")
new_comp = Image.fromarray(cv2.cvtColor(new_comp, cv2.COLOR_BGR2RGB))
comp_PIL.append(new_comp)
if args.dump_results:
cv2.imwrite(os.path.join(this_dump_results_dir, "{:04}.png".format(f)), comp)
gt = cv2.cvtColor(np.array(frames[f]).astype(np.uint8), cv2.COLOR_BGR2RGB)
ssim += measure.compare_ssim(comp, gt, data_range=255, multichannel=True, win_size=65)
s_psnr += measure.compare_psnr(gt, comp, data_range=255)
ssim_all += ssim
s_psnr_all += s_psnr
video_length_all += (video_length)
if video_no % 50 ==1:
print("ssim {}, psnr {}".format(ssim_all/video_length_all, s_psnr_all/video_length_all))
# FVID computation
imgs = _to_tensors(comp_PIL).unsqueeze(0).to(device)
gts = _to_tensors(frames_PIL).unsqueeze(0).to(device)
output_i3d_activations.append(get_i3d_activations(imgs).cpu().numpy().flatten())
real_i3d_activations.append(get_i3d_activations(gts).cpu().numpy().flatten())
fid_score = get_fid_score(real_i3d_activations, output_i3d_activations)
print("[Finish evaluating, ssim is {}, psnr is {}]".format(ssim_all/video_length_all, s_psnr_all/video_length_all))
print("[fvid score is {}]".format(fid_score))
if __name__ == '__main__':
main_worker()