-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtest.py
160 lines (142 loc) · 5.89 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# -*- coding: utf-8 -*-
import cv2
from PIL import Image
import numpy as np
import importlib
import os
import argparse
import torch
import torch.nn as nn
from torchvision import transforms
from core.utils import Stack, ToTorchFormatTensor
parser = argparse.ArgumentParser(description="FuseFormer")
parser.add_argument("-v", "--video", type=str, required=True)
parser.add_argument("-m", "--mask", type=str, required=True)
parser.add_argument("-c", "--ckpt", type=str, required=True)
parser.add_argument("--model", type=str, default='fuseformer')
parser.add_argument("--width", type=int, default=432)
parser.add_argument("--height", type=int, default=240)
parser.add_argument("--outw", type=int, default=432)
parser.add_argument("--outh", type=int, default=240)
parser.add_argument("--step", type=int, default=10)
parser.add_argument("--num_ref", type=int, default=-1)
parser.add_argument("--neighbor_stride", type=int, default=5)
parser.add_argument("--savefps", type=int, default=24)
parser.add_argument("--use_mp4", action='store_true')
args = parser.parse_args()
w, h = args.width, args.height
ref_length = args.step # ref_step
num_ref = args.num_ref
neighbor_stride = args.neighbor_stride
default_fps = args.savefps
_to_tensors = transforms.Compose([
Stack(),
ToTorchFormatTensor()])
# sample reference frames from the whole video
def get_ref_index(f, neighbor_ids, length):
ref_index = []
if num_ref == -1:
for i in range(0, length, ref_length):
if not i in neighbor_ids:
ref_index.append(i)
else:
start_idx = max(0, f - ref_length * (num_ref//2))
end_idx = min(length, f + ref_length * (num_ref//2))
for i in range(start_idx, end_idx+1, ref_length):
if not i in neighbor_ids:
if len(ref_index) > num_ref:
#if len(ref_index) >= 5-len(neighbor_ids):
break
ref_index.append(i)
return ref_index
# read frame-wise masks
def read_mask(mpath):
masks = []
mnames = os.listdir(mpath)
mnames.sort()
for m in mnames:
m = Image.open(os.path.join(mpath, m))
m = m.resize((w, h), Image.NEAREST)
m = np.array(m.convert('L'))
m = np.array(m > 0).astype(np.uint8)
m = cv2.dilate(m, cv2.getStructuringElement(
cv2.MORPH_CROSS, (3, 3)), iterations=4)
masks.append(Image.fromarray(m*255))
return masks
# read frames from video
def read_frame_from_videos(args):
vname = args.video
frames = []
if args.use_mp4:
vidcap = cv2.VideoCapture(vname)
success, image = vidcap.read()
count = 0
while success:
image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
frames.append(image.resize((w,h)))
success, image = vidcap.read()
count += 1
else:
lst = os.listdir(vname)
lst.sort()
fr_lst = [vname+'/'+name for name in lst]
for fr in fr_lst:
image = cv2.imread(fr)
image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
frames.append(image.resize((w,h)))
return frames
def main_worker():
# set up models
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net = importlib.import_module('model.' + args.model)
model = net.InpaintGenerator().to(device)
model_path = args.ckpt
data = torch.load(args.ckpt, map_location=device)
model.load_state_dict(data)
print('loading from: {}'.format(args.ckpt))
model.eval()
# prepare datset, encode all frames into deep space
frames = read_frame_from_videos(args)
video_length = len(frames)
imgs = _to_tensors(frames).unsqueeze(0)*2-1
frames = [np.array(f).astype(np.uint8) for f in frames]
masks = read_mask(args.mask)
binary_masks = [np.expand_dims((np.array(m) != 0).astype(np.uint8), 2) for m in masks]
masks = _to_tensors(masks).unsqueeze(0)
imgs, masks = imgs.to(device), masks.to(device)
comp_frames = [None]*video_length
print('loading videos and masks from: {}'.format(args.video))
# completing holes by spatial-temporal transformers
for f in range(0, video_length, neighbor_stride):
neighbor_ids = [i for i in range(max(0, f-neighbor_stride), min(video_length, f+neighbor_stride+1))]
ref_ids = get_ref_index(f, neighbor_ids, video_length)
print(f, len(neighbor_ids), len(ref_ids))
len_temp = len(neighbor_ids) + len(ref_ids)
selected_imgs = imgs[:1, neighbor_ids+ref_ids, :, :, :]
selected_masks = masks[:1, neighbor_ids+ref_ids, :, :, :]
with torch.no_grad():
masked_imgs = selected_imgs*(1-selected_masks)
pred_img = model(masked_imgs)
pred_img = (pred_img + 1) / 2
pred_img = pred_img.cpu().permute(0, 2, 3, 1).numpy()*255
for i in range(len(neighbor_ids)):
idx = neighbor_ids[i]
img = np.array(pred_img[i]).astype(
np.uint8)*binary_masks[idx] + frames[idx] * (1-binary_masks[idx])
if comp_frames[idx] is None:
comp_frames[idx] = img
else:
comp_frames[idx] = comp_frames[idx].astype(
np.float32)*0.5 + img.astype(np.float32)*0.5
name = args.video.strip().split('/')[-1]
writer = cv2.VideoWriter(f"{name}_result.mp4", cv2.VideoWriter_fourcc(*"mp4v"), default_fps, (args.outw, args.outh))
for f in range(video_length):
comp = np.array(comp_frames[f]).astype(
np.uint8)*binary_masks[f] + frames[f] * (1-binary_masks[f])
if w != args.outw:
comp = cv2.resize(comp, (args.outw, args.outh), interpolation=cv2.INTER_LINEAR)
writer.write(cv2.cvtColor(np.array(comp).astype(np.uint8), cv2.COLOR_BGR2RGB))
writer.release()
print('Finish in {}'.format(f"{name}_result.mp4"))
if __name__ == '__main__':
main_worker()