-
Notifications
You must be signed in to change notification settings - Fork 13.2k
/
Copy pathmod.rs
1269 lines (1172 loc) · 38.6 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Native threads.
//!
//! ## The threading model
//!
//! An executing Rust program consists of a collection of native OS threads,
//! each with their own stack and local state. Threads can be named, and
//! provide some built-in support for low-level synchronization.
//!
//! Communication between threads can be done through
//! [channels], Rust's message-passing types, along with [other forms of thread
//! synchronization](../../std/sync/index.html) and shared-memory data
//! structures. In particular, types that are guaranteed to be
//! threadsafe are easily shared between threads using the
//! atomically-reference-counted container, [`Arc`].
//!
//! Fatal logic errors in Rust cause *thread panic*, during which
//! a thread will unwind the stack, running destructors and freeing
//! owned resources. Thread panic is unrecoverable from within
//! the panicking thread (i.e. there is no 'try/catch' in Rust), but
//! the panic may optionally be detected from a different thread. If
//! the main thread panics, the application will exit with a non-zero
//! exit code.
//!
//! When the main thread of a Rust program terminates, the entire program shuts
//! down, even if other threads are still running. However, this module provides
//! convenient facilities for automatically waiting for the termination of a
//! child thread (i.e., join).
//!
//! ## Spawning a thread
//!
//! A new thread can be spawned using the [`thread::spawn`][`spawn`] function:
//!
//! ```rust
//! use std::thread;
//!
//! thread::spawn(move || {
//! // some work here
//! });
//! ```
//!
//! In this example, the spawned thread is "detached" from the current
//! thread. This means that it can outlive its parent (the thread that spawned
//! it), unless this parent is the main thread.
//!
//! The parent thread can also wait on the completion of the child
//! thread; a call to [`spawn`] produces a [`JoinHandle`], which provides
//! a `join` method for waiting:
//!
//! ```rust
//! use std::thread;
//!
//! let child = thread::spawn(move || {
//! // some work here
//! });
//! // some work here
//! let res = child.join();
//! ```
//!
//! The [`join`] method returns a [`Result`] containing [`Ok`] of the final
//! value produced by the child thread, or [`Err`] of the value given to
//! a call to [`panic!`] if the child panicked.
//!
//! ## Configuring threads
//!
//! A new thread can be configured before it is spawned via the [`Builder`] type,
//! which currently allows you to set the name and stack size for the child thread:
//!
//! ```rust
//! # #![allow(unused_must_use)]
//! use std::thread;
//!
//! thread::Builder::new().name("child1".to_string()).spawn(move || {
//! println!("Hello, world!");
//! });
//! ```
//!
//! ## The `Thread` type
//!
//! Threads are represented via the [`Thread`] type, which you can get in one of
//! two ways:
//!
//! * By spawning a new thread, e.g. using the [`thread::spawn`][`spawn`]
//! function, and calling [`thread()`] on the [`JoinHandle`].
//! * By requesting the current thread, using the [`thread::current()`] function.
//!
//! The [`thread::current()`] function is available even for threads not spawned
//! by the APIs of this module.
//!
//! ## Blocking support: park and unpark
//!
//! Every thread is equipped with some basic low-level blocking support, via the
//! [`thread::park()`][`park()`] function and [`thread::Thread::unpark()`][`unpark()`]
//! method. [`park()`] blocks the current thread, which can then be resumed from
//! another thread by calling the [`unpark()`] method on the blocked thread's handle.
//!
//! Conceptually, each [`Thread`] handle has an associated token, which is
//! initially not present:
//!
//! * The [`thread::park()`][`park()`] function blocks the current thread unless or until
//! the token is available for its thread handle, at which point it atomically
//! consumes the token. It may also return *spuriously*, without consuming the
//! token. [`thread::park_timeout()`] does the same, but allows specifying a
//! maximum time to block the thread for.
//!
//! * The [`unpark()`] method on a [`Thread`] atomically makes the token available
//! if it wasn't already.
//!
//! In other words, each [`Thread`] acts a bit like a semaphore with initial count
//! 0, except that the semaphore is *saturating* (the count cannot go above 1),
//! and can return spuriously.
//!
//! The API is typically used by acquiring a handle to the current thread,
//! placing that handle in a shared data structure so that other threads can
//! find it, and then `park`ing. When some desired condition is met, another
//! thread calls [`unpark()`] on the handle.
//!
//! The motivation for this design is twofold:
//!
//! * It avoids the need to allocate mutexes and condvars when building new
//! synchronization primitives; the threads already provide basic blocking/signaling.
//!
//! * It can be implemented very efficiently on many platforms.
//!
//! ## Thread-local storage
//!
//! This module also provides an implementation of thread-local storage for Rust
//! programs. Thread-local storage is a method of storing data into a global
//! variable that each thread in the program will have its own copy of.
//! Threads do not share this data, so accesses do not need to be synchronized.
//!
//! A thread-local key owns the value it contains and will destroy the value when the
//! thread exits. It is created with the [`thread_local!`] macro and can contain any
//! value that is `'static` (no borrowed pointers). It provides an accessor function,
//! [`with`], that yields a shared reference to the value to the specified
//! closure. Thread-local keys allow only shared access to values, as there would be no
//! way to guarantee uniqueness if mutable borrows were allowed. Most values
//! will want to make use of some form of **interior mutability** through the
//! [`Cell`] or [`RefCell`] types.
//!
//! [channels]: ../../std/sync/mpsc/index.html
//! [`Arc`]: ../../std/sync/struct.Arc.html
//! [`spawn`]: ../../std/thread/fn.spawn.html
//! [`JoinHandle`]: ../../std/thread/struct.JoinHandle.html
//! [`thread()`]: ../../std/thread/struct.JoinHandle.html#method.thread
//! [`join`]: ../../std/thread/struct.JoinHandle.html#method.join
//! [`Result`]: ../../std/result/enum.Result.html
//! [`Ok`]: ../../std/result/enum.Result.html#variant.Ok
//! [`Err`]: ../../std/result/enum.Result.html#variant.Err
//! [`panic!`]: ../../std/macro.panic.html
//! [`Builder`]: ../../std/thread/struct.Builder.html
//! [`thread::current()`]: ../../std/thread/fn.spawn.html
//! [`Thread`]: ../../std/thread/struct.Thread.html
//! [`park()`]: ../../std/thread/fn.park.html
//! [`unpark()`]: ../../std/thread/struct.Thread.html#method.unpark
//! [`thread::park_timeout()`]: ../../std/thread/fn.park_timeout.html
//! [`Cell`]: ../cell/struct.Cell.html
//! [`RefCell`]: ../cell/struct.RefCell.html
//! [`thread_local!`]: ../macro.thread_local.html
//! [`with`]: struct.LocalKey.html#method.with
#![stable(feature = "rust1", since = "1.0.0")]
use any::Any;
use cell::UnsafeCell;
use ffi::{CStr, CString};
use fmt;
use io;
use panic;
use panicking;
use str;
use sync::{Mutex, Condvar, Arc};
use sys::thread as imp;
use sys_common::mutex;
use sys_common::thread_info;
use sys_common::util;
use sys_common::{AsInner, IntoInner};
use time::Duration;
////////////////////////////////////////////////////////////////////////////////
// Thread-local storage
////////////////////////////////////////////////////////////////////////////////
#[macro_use] mod local;
#[stable(feature = "rust1", since = "1.0.0")]
pub use self::local::{LocalKey, LocalKeyState};
// The types used by the thread_local! macro to access TLS keys. Note that there
// are two types, the "OS" type and the "fast" type. The OS thread local key
// type is accessed via platform-specific API calls and is slow, while the fast
// key type is accessed via code generated via LLVM, where TLS keys are set up
// by the elf linker. Note that the OS TLS type is always available: on macOS
// the standard library is compiled with support for older platform versions
// where fast TLS was not available; end-user code is compiled with fast TLS
// where available, but both are needed.
#[unstable(feature = "libstd_thread_internals", issue = "0")]
#[cfg(target_thread_local)]
#[doc(hidden)] pub use sys::fast_thread_local::Key as __FastLocalKeyInner;
#[unstable(feature = "libstd_thread_internals", issue = "0")]
#[doc(hidden)] pub use self::local::os::Key as __OsLocalKeyInner;
////////////////////////////////////////////////////////////////////////////////
// Builder
////////////////////////////////////////////////////////////////////////////////
/// Thread configuration. Provides detailed control over the properties
/// and behavior of new threads.
///
/// # Examples
///
/// ```
/// use std::thread;
///
/// let builder = thread::Builder::new();
///
/// let handler = builder.spawn(|| {
/// // thread code
/// }).unwrap();
///
/// handler.join().unwrap();
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Debug)]
pub struct Builder {
// A name for the thread-to-be, for identification in panic messages
name: Option<String>,
// The size of the stack for the spawned thread in bytes
stack_size: Option<usize>,
}
impl Builder {
/// Generates the base configuration for spawning a thread, from which
/// configuration methods can be chained.
///
/// # Examples
///
/// ```
/// use std::thread;
///
/// let builder = thread::Builder::new()
/// .name("foo".into())
/// .stack_size(10);
///
/// let handler = builder.spawn(|| {
/// // thread code
/// }).unwrap();
///
/// handler.join().unwrap();
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn new() -> Builder {
Builder {
name: None,
stack_size: None,
}
}
/// Names the thread-to-be. Currently the name is used for identification
/// only in panic messages.
///
/// # Examples
///
/// ```
/// use std::thread;
///
/// let builder = thread::Builder::new()
/// .name("foo".into());
///
/// let handler = builder.spawn(|| {
/// assert_eq!(thread::current().name(), Some("foo"))
/// }).unwrap();
///
/// handler.join().unwrap();
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn name(mut self, name: String) -> Builder {
self.name = Some(name);
self
}
/// Sets the size of the stack (in bytes) for the new thread.
///
/// The actual stack size may be greater than this value if
/// the platform specifies minimal stack size.
///
/// # Examples
///
/// ```
/// use std::thread;
///
/// let builder = thread::Builder::new().stack_size(32 * 1024);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn stack_size(mut self, size: usize) -> Builder {
self.stack_size = Some(size);
self
}
/// Spawns a new thread, and returns a join handle for it.
///
/// The child thread may outlive the parent (unless the parent thread
/// is the main thread; the whole process is terminated when the main
/// thread finishes). The join handle can be used to block on
/// termination of the child thread, including recovering its panics.
///
/// # Errors
///
/// Unlike the [`spawn`] free function, this method yields an
/// [`io::Result`] to capture any failure to create the thread at
/// the OS level.
///
/// [`spawn`]: ../../std/thread/fn.spawn.html
/// [`io::Result`]: ../../std/io/type.Result.html
///
/// # Examples
///
/// ```
/// use std::thread;
///
/// let builder = thread::Builder::new();
///
/// let handler = builder.spawn(|| {
/// // thread code
/// }).unwrap();
///
/// handler.join().unwrap();
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn spawn<F, T>(self, f: F) -> io::Result<JoinHandle<T>> where
F: FnOnce() -> T, F: Send + 'static, T: Send + 'static
{
let Builder { name, stack_size } = self;
let stack_size = stack_size.unwrap_or(util::min_stack());
let my_thread = Thread::new(name);
let their_thread = my_thread.clone();
let my_packet : Arc<UnsafeCell<Option<Result<T>>>>
= Arc::new(UnsafeCell::new(None));
let their_packet = my_packet.clone();
let main = move || {
if let Some(name) = their_thread.cname() {
imp::Thread::set_name(name);
}
unsafe {
thread_info::set(imp::guard::current(), their_thread);
let try_result = panic::catch_unwind(panic::AssertUnwindSafe(f));
*their_packet.get() = Some(try_result);
}
};
Ok(JoinHandle(JoinInner {
native: unsafe {
Some(imp::Thread::new(stack_size, Box::new(main))?)
},
thread: my_thread,
packet: Packet(my_packet),
}))
}
}
////////////////////////////////////////////////////////////////////////////////
// Free functions
////////////////////////////////////////////////////////////////////////////////
/// Spawns a new thread, returning a [`JoinHandle`] for it.
///
/// The join handle will implicitly *detach* the child thread upon being
/// dropped. In this case, the child thread may outlive the parent (unless
/// the parent thread is the main thread; the whole process is terminated when
/// the main thread finishes). Additionally, the join handle provides a [`join`]
/// method that can be used to join the child thread. If the child thread
/// panics, [`join`] will return an [`Err`] containing the argument given to
/// [`panic`].
///
/// # Panics
///
/// Panics if the OS fails to create a thread; use [`Builder::spawn`]
/// to recover from such errors.
///
/// [`JoinHandle`]: ../../std/thread/struct.JoinHandle.html
/// [`join`]: ../../std/thread/struct.JoinHandle.html#method.join
/// [`Err`]: ../../std/result/enum.Result.html#variant.Err
/// [`panic`]: ../../std/macro.panic.html
/// [`Builder::spawn`]: ../../std/thread/struct.Builder.html#method.spawn
///
/// # Examples
///
/// ```
/// use std::thread;
///
/// let handler = thread::spawn(|| {
/// // thread code
/// });
///
/// handler.join().unwrap();
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn spawn<F, T>(f: F) -> JoinHandle<T> where
F: FnOnce() -> T, F: Send + 'static, T: Send + 'static
{
Builder::new().spawn(f).unwrap()
}
/// Gets a handle to the thread that invokes it.
///
/// # Examples
///
/// Getting a handle to the current thread with `thread::current()`:
///
/// ```
/// use std::thread;
///
/// let handler = thread::Builder::new()
/// .name("named thread".into())
/// .spawn(|| {
/// let handle = thread::current();
/// assert_eq!(handle.name(), Some("named thread"));
/// })
/// .unwrap();
///
/// handler.join().unwrap();
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn current() -> Thread {
thread_info::current_thread().expect("use of std::thread::current() is not \
possible after the thread's local \
data has been destroyed")
}
/// Cooperatively gives up a timeslice to the OS scheduler.
///
/// # Examples
///
/// ```
/// use std::thread;
///
/// thread::yield_now();
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn yield_now() {
imp::Thread::yield_now()
}
/// Determines whether the current thread is unwinding because of panic.
///
/// # Examples
///
/// ```should_panic
/// use std::thread;
///
/// struct SomeStruct;
///
/// impl Drop for SomeStruct {
/// fn drop(&mut self) {
/// if thread::panicking() {
/// println!("dropped while unwinding");
/// } else {
/// println!("dropped while not unwinding");
/// }
/// }
/// }
///
/// {
/// print!("a: ");
/// let a = SomeStruct;
/// }
///
/// {
/// print!("b: ");
/// let b = SomeStruct;
/// panic!()
/// }
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn panicking() -> bool {
panicking::panicking()
}
/// Puts the current thread to sleep for the specified amount of time.
///
/// The thread may sleep longer than the duration specified due to scheduling
/// specifics or platform-dependent functionality.
///
/// # Platform behavior
///
/// On Unix platforms this function will not return early due to a
/// signal being received or a spurious wakeup.
///
/// # Examples
///
/// ```no_run
/// use std::thread;
///
/// // Let's sleep for 2 seconds:
/// thread::sleep_ms(2000);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_deprecated(since = "1.6.0", reason = "replaced by `std::thread::sleep`")]
pub fn sleep_ms(ms: u32) {
sleep(Duration::from_millis(ms as u64))
}
/// Puts the current thread to sleep for the specified amount of time.
///
/// The thread may sleep longer than the duration specified due to scheduling
/// specifics or platform-dependent functionality.
///
/// # Platform behavior
///
/// On Unix platforms this function will not return early due to a
/// signal being received or a spurious wakeup. Platforms which do not support
/// nanosecond precision for sleeping will have `dur` rounded up to the nearest
/// granularity of time they can sleep for.
///
/// # Examples
///
/// ```no_run
/// use std::{thread, time};
///
/// let ten_millis = time::Duration::from_millis(10);
/// let now = time::Instant::now();
///
/// thread::sleep(ten_millis);
///
/// assert!(now.elapsed() >= ten_millis);
/// ```
#[stable(feature = "thread_sleep", since = "1.4.0")]
pub fn sleep(dur: Duration) {
imp::Thread::sleep(dur)
}
/// Blocks unless or until the current thread's token is made available.
///
/// Every thread is equipped with some basic low-level blocking support, via
/// the `park()` function and the [`unpark()`][unpark] method. These can be
/// used as a more CPU-efficient implementation of a spinlock.
///
/// [unpark]: struct.Thread.html#method.unpark
///
/// The API is typically used by acquiring a handle to the current thread,
/// placing that handle in a shared data structure so that other threads can
/// find it, and then parking (in a loop with a check for the token actually
/// being acquired).
///
/// A call to `park` does not guarantee that the thread will remain parked
/// forever, and callers should be prepared for this possibility.
///
/// See the [module documentation][thread] for more detail.
///
/// [thread]: index.html
//
// The implementation currently uses the trivial strategy of a Mutex+Condvar
// with wakeup flag, which does not actually allow spurious wakeups. In the
// future, this will be implemented in a more efficient way, perhaps along the lines of
// http://cr.openjdk.java.net/~stefank/6989984.1/raw_files/new/src/os/linux/vm/os_linux.cpp
// or futuxes, and in either case may allow spurious wakeups.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn park() {
let thread = current();
let mut guard = thread.inner.lock.lock().unwrap();
while !*guard {
guard = thread.inner.cvar.wait(guard).unwrap();
}
*guard = false;
}
/// Use [park_timeout].
///
/// Blocks unless or until the current thread's token is made available or
/// the specified duration has been reached (may wake spuriously).
///
/// The semantics of this function are equivalent to `park()` except that the
/// thread will be blocked for roughly no longer than `ms`. This method
/// should not be used for precise timing due to anomalies such as
/// preemption or platform differences that may not cause the maximum
/// amount of time waited to be precisely `ms` long.
///
/// See the [module documentation][thread] for more detail.
///
/// [thread]: index.html
/// [park_timeout]: fn.park_timeout.html
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_deprecated(since = "1.6.0", reason = "replaced by `std::thread::park_timeout`")]
pub fn park_timeout_ms(ms: u32) {
park_timeout(Duration::from_millis(ms as u64))
}
/// Blocks unless or until the current thread's token is made available or
/// the specified duration has been reached (may wake spuriously).
///
/// The semantics of this function are equivalent to `park()` except that the
/// thread will be blocked for roughly no longer than `dur`. This method
/// should not be used for precise timing due to anomalies such as
/// preemption or platform differences that may not cause the maximum
/// amount of time waited to be precisely `dur` long.
///
/// See the module doc for more detail.
///
/// # Platform behavior
///
/// Platforms which do not support nanosecond precision for sleeping will have
/// `dur` rounded up to the nearest granularity of time they can sleep for.
///
/// # Example
///
/// Waiting for the complete expiration of the timeout:
///
/// ```rust,no_run
/// use std::thread::park_timeout;
/// use std::time::{Instant, Duration};
///
/// let timeout = Duration::from_secs(2);
/// let beginning_park = Instant::now();
/// park_timeout(timeout);
///
/// while beginning_park.elapsed() < timeout {
/// println!("restarting park_timeout after {:?}", beginning_park.elapsed());
/// let timeout = timeout - beginning_park.elapsed();
/// park_timeout(timeout);
/// }
/// ```
#[stable(feature = "park_timeout", since = "1.4.0")]
pub fn park_timeout(dur: Duration) {
let thread = current();
let mut guard = thread.inner.lock.lock().unwrap();
if !*guard {
let (g, _) = thread.inner.cvar.wait_timeout(guard, dur).unwrap();
guard = g;
}
*guard = false;
}
////////////////////////////////////////////////////////////////////////////////
// ThreadId
////////////////////////////////////////////////////////////////////////////////
/// A unique identifier for a running thread.
///
/// A `ThreadId` is an opaque object that has a unique value for each thread
/// that creates one. `ThreadId`s do not correspond to a thread's system-
/// designated identifier.
///
/// # Examples
///
/// ```
/// #![feature(thread_id)]
///
/// use std::thread;
///
/// let handler = thread::Builder::new()
/// .spawn(|| {
/// let thread = thread::current();
/// let thread_id = thread.id();
/// })
/// .unwrap();
///
/// handler.join().unwrap();
/// ```
#[unstable(feature = "thread_id", issue = "21507")]
#[derive(Eq, PartialEq, Copy, Clone)]
pub struct ThreadId(u64);
impl ThreadId {
// Generate a new unique thread ID.
fn new() -> ThreadId {
static GUARD: mutex::Mutex = mutex::Mutex::new();
static mut COUNTER: u64 = 0;
unsafe {
GUARD.lock();
// If we somehow use up all our bits, panic so that we're not
// covering up subtle bugs of IDs being reused.
if COUNTER == ::u64::MAX {
GUARD.unlock();
panic!("failed to generate unique thread ID: bitspace exhausted");
}
let id = COUNTER;
COUNTER += 1;
GUARD.unlock();
ThreadId(id)
}
}
}
#[unstable(feature = "thread_id", issue = "21507")]
impl fmt::Debug for ThreadId {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.pad("ThreadId { .. }")
}
}
////////////////////////////////////////////////////////////////////////////////
// Thread
////////////////////////////////////////////////////////////////////////////////
/// The internal representation of a `Thread` handle
struct Inner {
name: Option<CString>, // Guaranteed to be UTF-8
id: ThreadId,
lock: Mutex<bool>, // true when there is a buffered unpark
cvar: Condvar,
}
#[derive(Clone)]
#[stable(feature = "rust1", since = "1.0.0")]
/// A handle to a thread.
///
/// # Examples
///
/// ```
/// use std::thread;
///
/// let handler = thread::Builder::new()
/// .name("foo".into())
/// .spawn(|| {
/// let thread = thread::current();
/// println!("thread name: {}", thread.name().unwrap());
/// })
/// .unwrap();
///
/// handler.join().unwrap();
/// ```
pub struct Thread {
inner: Arc<Inner>,
}
impl Thread {
// Used only internally to construct a thread object without spawning
pub(crate) fn new(name: Option<String>) -> Thread {
let cname = name.map(|n| {
CString::new(n).expect("thread name may not contain interior null bytes")
});
Thread {
inner: Arc::new(Inner {
name: cname,
id: ThreadId::new(),
lock: Mutex::new(false),
cvar: Condvar::new(),
})
}
}
/// Atomically makes the handle's token available if it is not already.
///
/// See the module doc for more detail.
///
/// # Examples
///
/// ```
/// use std::thread;
///
/// let handler = thread::Builder::new()
/// .spawn(|| {
/// let thread = thread::current();
/// thread.unpark();
/// })
/// .unwrap();
///
/// handler.join().unwrap();
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn unpark(&self) {
let mut guard = self.inner.lock.lock().unwrap();
if !*guard {
*guard = true;
self.inner.cvar.notify_one();
}
}
/// Gets the thread's unique identifier.
///
/// # Examples
///
/// ```
/// #![feature(thread_id)]
///
/// use std::thread;
///
/// let handler = thread::Builder::new()
/// .spawn(|| {
/// let thread = thread::current();
/// println!("thread id: {:?}", thread.id());
/// })
/// .unwrap();
///
/// handler.join().unwrap();
/// ```
#[unstable(feature = "thread_id", issue = "21507")]
pub fn id(&self) -> ThreadId {
self.inner.id
}
/// Gets the thread's name.
///
/// # Examples
///
/// Threads by default have no name specified:
///
/// ```
/// use std::thread;
///
/// let builder = thread::Builder::new();
///
/// let handler = builder.spawn(|| {
/// assert!(thread::current().name().is_none());
/// }).unwrap();
///
/// handler.join().unwrap();
/// ```
///
/// Thread with a specified name:
///
/// ```
/// use std::thread;
///
/// let builder = thread::Builder::new()
/// .name("foo".into());
///
/// let handler = builder.spawn(|| {
/// assert_eq!(thread::current().name(), Some("foo"))
/// }).unwrap();
///
/// handler.join().unwrap();
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn name(&self) -> Option<&str> {
self.cname().map(|s| unsafe { str::from_utf8_unchecked(s.to_bytes()) } )
}
fn cname(&self) -> Option<&CStr> {
self.inner.name.as_ref().map(|s| &**s)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Debug for Thread {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&self.name(), f)
}
}
////////////////////////////////////////////////////////////////////////////////
// JoinHandle
////////////////////////////////////////////////////////////////////////////////
/// Indicates the manner in which a thread exited.
///
/// A thread that completes without panicking is considered to exit successfully.
#[stable(feature = "rust1", since = "1.0.0")]
pub type Result<T> = ::result::Result<T, Box<Any + Send + 'static>>;
// This packet is used to communicate the return value between the child thread
// and the parent thread. Memory is shared through the `Arc` within and there's
// no need for a mutex here because synchronization happens with `join()` (the
// parent thread never reads this packet until the child has exited).
//
// This packet itself is then stored into a `JoinInner` which in turns is placed
// in `JoinHandle` and `JoinGuard`. Due to the usage of `UnsafeCell` we need to
// manually worry about impls like Send and Sync. The type `T` should
// already always be Send (otherwise the thread could not have been created) and
// this type is inherently Sync because no methods take &self. Regardless,
// however, we add inheriting impls for Send/Sync to this type to ensure it's
// Send/Sync and that future modifications will still appropriately classify it.
struct Packet<T>(Arc<UnsafeCell<Option<Result<T>>>>);
unsafe impl<T: Send> Send for Packet<T> {}
unsafe impl<T: Sync> Sync for Packet<T> {}
/// Inner representation for JoinHandle
struct JoinInner<T> {
native: Option<imp::Thread>,
thread: Thread,
packet: Packet<T>,
}
impl<T> JoinInner<T> {
fn join(&mut self) -> Result<T> {
self.native.take().unwrap().join();
unsafe {
(*self.packet.0.get()).take().unwrap()
}
}
}
/// An owned permission to join on a thread (block on its termination).
///
/// A `JoinHandle` *detaches* the child thread when it is dropped.
///
/// Due to platform restrictions, it is not possible to [`Clone`] this
/// handle: the ability to join a child thread is a uniquely-owned
/// permission.
///
/// This `struct` is created by the [`thread::spawn`] function and the
/// [`thread::Builder::spawn`] method.
///
/// # Examples
///
/// Creation from [`thread::spawn`]:
///
/// ```
/// use std::thread;
///
/// let join_handle: thread::JoinHandle<_> = thread::spawn(|| {
/// // some work here
/// });
/// ```
///
/// Creation from [`thread::Builder::spawn`]:
///
/// ```
/// use std::thread;
///
/// let builder = thread::Builder::new();
///
/// let join_handle: thread::JoinHandle<_> = builder.spawn(|| {
/// // some work here
/// }).unwrap();
/// ```
///
/// [`Clone`]: ../../std/clone/trait.Clone.html
/// [`thread::spawn`]: fn.spawn.html
/// [`thread::Builder::spawn`]: struct.Builder.html#method.spawn
#[stable(feature = "rust1", since = "1.0.0")]
pub struct JoinHandle<T>(JoinInner<T>);
impl<T> JoinHandle<T> {
/// Extracts a handle to the underlying thread.
///
/// # Examples
///
/// ```
/// #![feature(thread_id)]
///
/// use std::thread;
///
/// let builder = thread::Builder::new();
///
/// let join_handle: thread::JoinHandle<_> = builder.spawn(|| {
/// // some work here
/// }).unwrap();
///
/// let thread = join_handle.thread();
/// println!("thread id: {:?}", thread.id());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn thread(&self) -> &Thread {
&self.0.thread
}
/// Waits for the associated thread to finish.
///
/// If the child thread panics, [`Err`] is returned with the parameter given
/// to [`panic`].
///
/// [`Err`]: ../../std/result/enum.Result.html#variant.Err
/// [`panic`]: ../../std/macro.panic.html
///
/// # Examples
///
/// ```
/// use std::thread;
///
/// let builder = thread::Builder::new();
///
/// let join_handle: thread::JoinHandle<_> = builder.spawn(|| {
/// // some work here
/// }).unwrap();
/// join_handle.join().expect("Couldn't join on the associated thread");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn join(mut self) -> Result<T> {
self.0.join()
}
}
impl<T> AsInner<imp::Thread> for JoinHandle<T> {
fn as_inner(&self) -> &imp::Thread { self.0.native.as_ref().unwrap() }
}
impl<T> IntoInner<imp::Thread> for JoinHandle<T> {
fn into_inner(self) -> imp::Thread { self.0.native.unwrap() }