-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathXGBoost_Tuning.R
190 lines (157 loc) · 4.99 KB
/
XGBoost_Tuning.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#set working directory
path <- "~/December 2016/XGBoost_Tutorial"
setwd(path)
#load libraries
library(data.table)
library(mlr)
#set variable names
setcol <- c("age",
"workclass",
"fnlwgt",
"education",
"education-num",
"marital-status",
"occupation",
"relationship",
"race",
"sex",
"capital-gain",
"capital-loss",
"hours-per-week",
"native-country",
"target")
#load data
train <- read.table("adultdata.txt",header = F,sep = ",",col.names = setcol,na.strings = c(" ?"),stringsAsFactors = F)
test <- read.table("adulttest.txt",header = F,sep = ",",col.names = setcol,skip = 1, na.strings = c(" ?"),stringsAsFactors = F)
#convert data frame to data table
setDT(train)
setDT(test)
#check missing values
table(is.na(train))
sapply(train, function(x) sum(is.na(x))/length(x))*100
table(is.na(test))
sapply(test, function(x) sum(is.na(x))/length(x))*100
#quick data cleaning
#remove extra character from target variable
library(stringr)
test[,target := substr(target,start = 1,stop = nchar(target)-1)]
#remove leading whitespaces
char_col <- colnames(train)[sapply(test,is.character)]
for(i in char_col)
set(train,j=i,value = str_trim(train[[i]],side = "left"))
for(i in char_col)
set(test,j=i,value = str_trim(test[[i]],side = "left"))
#set all missing value as "Missing"
train[is.na(train)] <- "Missing"
test[is.na(test)] <- "Missing"
#using one hot encoding
labels <- train$target
ts_label <- test$target
new_tr <- model.matrix(~.+0,data = train[,-c("target"),with=F])
new_ts <- model.matrix(~.+0,data = test[,-c("target"),with=F])
#convert factor to numeric
labels <- as.numeric(labels)-1
ts_label <- as.numeric(ts_label)-1
#preparing matrix
dtrain <- xgb.DMatrix(data = new_tr,label = labels)
dtest <- xgb.DMatrix(data = new_ts,label=ts_label)
#default parameters
params <- list(
booster = "gbtree",
objective = "binary:logistic",
eta=0.3,
gamma=0,
max_depth=6,
min_child_weight=1,
subsample=1,
colsample_bytree=1
)
xgbcv <- xgb.cv(params = params
,data = dtrain
,nrounds = 100
,nfold = 5
,showsd = T
,stratified = T
,print.every.n = 10
,early.stop.round = 20
,maximize = F
)
##best iteration = 79
min(xgbcv$test.error.mean)
#0.1263
#first default - model training
xgb1 <- xgb.train(
params = params
,data = dtrain
,nrounds = 79
,watchlist = list(val=dtest,train=dtrain)
,print.every.n = 10
,early.stop.round = 10
,maximize = F
,eval_metric = "error"
)
#model prediction
xgbpred <- predict(xgb1,dtest)
xgbpred <- ifelse(xgbpred > 0.5,1,0)
#confusion matrix
library(caret)
confusionMatrix(xgbpred, ts_label)
#Accuracy - 86.54%
#view variable importance plot
mat <- xgb.importance(feature_names = colnames(new_tr),model = xgb1)
xgb.plot.importance(importance_matrix = mat[1:20]) #first 20 variables
#convert characters to factors
fact_col <- colnames(train)[sapply(train,is.character)]
for(i in fact_col)
set(train,j=i,value = factor(train[[i]]))
for(i in fact_col)
set(test,j=i,value = factor(test[[i]]))
#create tasks
traintask <- makeClassifTask(data = train,target = "target")
testtask <- makeClassifTask(data = test,target = "target")
#do one hot encoding
traintask <- createDummyFeatures(obj = traintask,target = "target")
testtask <- createDummyFeatures(obj = testtask,target = "target")
#create learner
lrn <- makeLearner("classif.xgboost",predict.type = "response")
lrn$par.vals <- list(
objective="binary:logistic",
eval_metric="error",
nrounds=100L,
eta=0.1
)
#set parameter space
params <- makeParamSet(
makeDiscreteParam("booster",values = c("gbtree","gblinear")),
makeIntegerParam("max_depth",lower = 3L,upper = 10L),
makeNumericParam("min_child_weight",lower = 1L,upper = 10L),
makeNumericParam("subsample",lower = 0.5,upper = 1),
makeNumericParam("colsample_bytree",lower = 0.5,upper = 1)
)
#set resampling strategy
rdesc <- makeResampleDesc("CV",stratify = T,iters=5L)
#search strategy
ctrl <- makeTuneControlRandom(maxit = 10L)
#set parallel backend
library(parallel)
library(parallelMap)
parallelStartSocket(cpus = detectCores())
#parameter tuning
mytune <- tuneParams(learner = lrn
,task = traintask
,resampling = rdesc
,measures = acc
,par.set = params
,control = ctrl
,show.info = T)
mytune$y #0.873069
#set hyperparameters
lrn_tune <- setHyperPars(lrn,par.vals = mytune$x)
#train model
xgmodel <- train(learner = lrn_tune,task = traintask)
#predict model
xgpred <- predict(xgmodel,testtask)
confusionMatrix(xgpred$data$response,xgpred$data$truth)
#Accuracy : 0.8747
#stop parallelization
parallelStop()