-
Notifications
You must be signed in to change notification settings - Fork 524
/
Copy pathsearch.py
567 lines (526 loc) · 25.6 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
"""
Functionality for running mmseqs locally. Takes in a fasta file, outputs final.a3m
"""
import logging
import math
import os
import shutil
import subprocess
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
from pathlib import Path
from typing import List, Union
from colabfold.batch import get_queries, msa_to_str
from colabfold.utils import safe_filename
logger = logging.getLogger(__name__)
MODULE_OUTPUT_POS = {
"align": 4,
"convertalis": 4,
"expandaln": 5,
"filterresult": 4,
"lndb": 2,
"mergedbs": 2,
"mvdb": 2,
"pairaln": 4,
"result2msa": 4,
"search": 3,
}
def run_mmseqs(mmseqs: Path, params: List[Union[str, Path]]):
module = params[0]
if module in MODULE_OUTPUT_POS:
output_pos = MODULE_OUTPUT_POS[module]
output_path = Path(params[output_pos]).with_suffix('.dbtype')
if output_path.exists():
logger.info(f"Skipping {module} because {output_path} already exists")
return
params_log = " ".join(str(i) for i in params)
logger.info(f"Running {mmseqs} {params_log}")
# hide MMseqs2 verbose paramters list that clogs up the log
os.environ["MMSEQS_CALL_DEPTH"] = "1"
subprocess.check_call([mmseqs] + params)
def mmseqs_search_monomer(
dbbase: Path,
base: Path,
uniref_db: Path = Path("uniref30_2302_db"),
template_db: Path = Path(""), # Unused by default
metagenomic_db: Path = Path("colabfold_envdb_202108_db"),
mmseqs: Path = Path("mmseqs"),
use_env: bool = True,
use_templates: bool = False,
filter: bool = True,
expand_eval: float = math.inf,
align_eval: int = 10,
diff: int = 3000,
qsc: float = -20.0,
max_accept: int = 1000000,
prefilter_mode: int = 0,
s: float = 8,
db_load_mode: int = 2,
threads: int = 32,
gpu: int = 0,
gpu_server: int = 0,
unpack: bool = True,
):
"""Run mmseqs with a local colabfold database set
db1: uniprot db (UniRef30)
db2: Template (unused by default)
db3: metagenomic db (colabfold_envdb_202108 or bfd_mgy_colabfold, the former is preferred)
"""
if filter:
# 0.1 was not used in benchmarks due to POSIX shell bug in line above
# EXPAND_EVAL=0.1
align_eval = 10
qsc = 0.8
max_accept = 100000
used_dbs = [uniref_db]
if use_templates:
used_dbs.append(template_db)
if use_env:
used_dbs.append(metagenomic_db)
for db in used_dbs:
if not dbbase.joinpath(f"{db}.dbtype").is_file():
raise FileNotFoundError(f"Database {db} does not exist")
if (
(
not dbbase.joinpath(f"{db}.idx").is_file()
and not dbbase.joinpath(f"{db}.idx.index").is_file()
)
or os.environ.get("MMSEQS_IGNORE_INDEX", False)
):
logger.info("Search does not use index")
db_load_mode = 0
dbSuffix1 = "_seq"
dbSuffix2 = "_aln"
dbSuffix3 = ""
else:
dbSuffix1 = ".idx"
dbSuffix2 = ".idx"
dbSuffix3 = ".idx"
search_param = ["--num-iterations", "3", "--db-load-mode", str(db_load_mode), "-a", "-e", "0.1", "--max-seqs", "10000"]
if gpu:
search_param += ["--gpu", str(gpu), "--prefilter-mode", "1"] # gpu version only supports ungapped prefilter currently
else:
search_param += ["--prefilter-mode", str(prefilter_mode)]
if s is not None: # sensitivy can only be set for non-gpu version, gpu version runs at max sensitivity
search_param += ["-s", "{:.1f}".format(s)]
else:
search_param += ["--k-score", "'seq:96,prof:80'"]
if gpu_server:
search_param += ["--gpu-server", str(gpu_server)]
filter_param = ["--filter-msa", str(filter), "--filter-min-enable", "1000", "--diff", str(diff), "--qid", "0.0,0.2,0.4,0.6,0.8,1.0", "--qsc", "0", "--max-seq-id", "0.95",]
expand_param = ["--expansion-mode", "0", "-e", str(expand_eval), "--expand-filter-clusters", str(filter), "--max-seq-id", "0.95",]
if not base.joinpath("uniref.a3m").with_suffix('.a3m.dbtype').exists():
run_mmseqs(mmseqs, ["search", base.joinpath("qdb"), dbbase.joinpath(uniref_db), base.joinpath("res"), base.joinpath("tmp"), "--threads", str(threads)] + search_param)
run_mmseqs(mmseqs, ["mvdb", base.joinpath("tmp/latest/profile_1"), base.joinpath("prof_res")])
run_mmseqs(mmseqs, ["lndb", base.joinpath("qdb_h"), base.joinpath("prof_res_h")])
run_mmseqs(mmseqs, ["expandaln", base.joinpath("qdb"), dbbase.joinpath(f"{uniref_db}{dbSuffix1}"), base.joinpath("res"), dbbase.joinpath(f"{uniref_db}{dbSuffix2}"), base.joinpath("res_exp"), "--db-load-mode", str(db_load_mode), "--threads", str(threads)] + expand_param)
run_mmseqs(mmseqs, ["align", base.joinpath("prof_res"), dbbase.joinpath(f"{uniref_db}{dbSuffix1}"), base.joinpath("res_exp"), base.joinpath("res_exp_realign"), "--db-load-mode", str(db_load_mode), "-e", str(align_eval), "--max-accept", str(max_accept), "--threads", str(threads), "--alt-ali", "10", "-a"])
run_mmseqs(mmseqs, ["filterresult", base.joinpath("qdb"), dbbase.joinpath(f"{uniref_db}{dbSuffix1}"),
base.joinpath("res_exp_realign"), base.joinpath("res_exp_realign_filter"), "--db-load-mode",
str(db_load_mode), "--qid", "0", "--qsc", str(qsc), "--diff", "0", "--threads",
str(threads), "--max-seq-id", "1.0", "--filter-min-enable", "100"])
run_mmseqs(mmseqs, ["result2msa", base.joinpath("qdb"), dbbase.joinpath(f"{uniref_db}{dbSuffix1}"),
base.joinpath("res_exp_realign_filter"), base.joinpath("uniref.a3m"), "--msa-format-mode",
"6", "--db-load-mode", str(db_load_mode), "--threads", str(threads)] + filter_param)
run_mmseqs(mmseqs, ["rmdb", base.joinpath("res_exp_realign_filter")])
run_mmseqs(mmseqs, ["rmdb", base.joinpath("res_exp_realign")])
run_mmseqs(mmseqs, ["rmdb", base.joinpath("res_exp")])
run_mmseqs(mmseqs, ["rmdb", base.joinpath("res")])
else:
logger.info(f"Skipping {uniref_db} search because uniref.a3m already exists")
if use_env and not base.joinpath("bfd.mgnify30.metaeuk30.smag30.a3m").with_suffix('.a3m.dbtype').exists():
run_mmseqs(mmseqs, ["search", base.joinpath("prof_res"), dbbase.joinpath(metagenomic_db), base.joinpath("res_env"),
base.joinpath("tmp3"), "--threads", str(threads)] + search_param)
run_mmseqs(mmseqs, ["expandaln", base.joinpath("prof_res"), dbbase.joinpath(f"{metagenomic_db}{dbSuffix1}"), base.joinpath("res_env"),
dbbase.joinpath(f"{metagenomic_db}{dbSuffix2}"), base.joinpath("res_env_exp"), "-e", str(expand_eval),
"--expansion-mode", "0", "--db-load-mode", str(db_load_mode), "--threads", str(threads)])
run_mmseqs(mmseqs, ["align", base.joinpath("tmp3/latest/profile_1"), dbbase.joinpath(f"{metagenomic_db}{dbSuffix1}"),
base.joinpath("res_env_exp"), base.joinpath("res_env_exp_realign"), "--db-load-mode",
str(db_load_mode), "-e", str(align_eval), "--max-accept", str(max_accept), "--threads",
str(threads), "--alt-ali", "10", "-a"])
run_mmseqs(mmseqs, ["filterresult", base.joinpath("qdb"), dbbase.joinpath(f"{metagenomic_db}{dbSuffix1}"),
base.joinpath("res_env_exp_realign"), base.joinpath("res_env_exp_realign_filter"),
"--db-load-mode", str(db_load_mode), "--qid", "0", "--qsc", str(qsc), "--diff", "0",
"--max-seq-id", "1.0", "--threads", str(threads), "--filter-min-enable", "100"])
run_mmseqs(mmseqs, ["result2msa", base.joinpath("qdb"), dbbase.joinpath(f"{metagenomic_db}{dbSuffix1}"),
base.joinpath("res_env_exp_realign_filter"),
base.joinpath("bfd.mgnify30.metaeuk30.smag30.a3m"), "--msa-format-mode", "6",
"--db-load-mode", str(db_load_mode), "--threads", str(threads)] + filter_param)
run_mmseqs(mmseqs, ["rmdb", base.joinpath("res_env_exp_realign_filter")])
run_mmseqs(mmseqs, ["rmdb", base.joinpath("res_env_exp_realign")])
run_mmseqs(mmseqs, ["rmdb", base.joinpath("res_env_exp")])
run_mmseqs(mmseqs, ["rmdb", base.joinpath("res_env")])
elif use_env:
logger.info(f"Skipping {metagenomic_db} search because bfd.mgnify30.metaeuk30.smag30.a3m already exists")
if use_templates and not base.joinpath(f"{template_db}.m8").with_suffix('.m8.dbtype').exists():
run_mmseqs(mmseqs, ["search", base.joinpath("prof_res"), dbbase.joinpath(template_db), base.joinpath("res_pdb"),
base.joinpath("tmp2"), "--db-load-mode", str(db_load_mode), "--threads", str(threads), "-s", "7.5", "-a", "-e", "0.1", "--prefilter-mode", str(prefilter_mode)])
run_mmseqs(mmseqs, ["convertalis", base.joinpath("prof_res"), dbbase.joinpath(f"{template_db}{dbSuffix3}"), base.joinpath("res_pdb"),
base.joinpath(f"{template_db}"), "--format-output",
"query,target,fident,alnlen,mismatch,gapopen,qstart,qend,tstart,tend,evalue,bits,cigar",
"--db-output", "1",
"--db-load-mode", str(db_load_mode), "--threads", str(threads)])
run_mmseqs(mmseqs, ["rmdb", base.joinpath("res_pdb")])
elif use_templates:
logger.info(f"Skipping {template_db} search because {template_db}.m8 already exists")
if use_env:
run_mmseqs(mmseqs, ["mergedbs", base.joinpath("qdb"), base.joinpath("final.a3m"), base.joinpath("uniref.a3m"), base.joinpath("bfd.mgnify30.metaeuk30.smag30.a3m")])
run_mmseqs(mmseqs, ["rmdb", base.joinpath("bfd.mgnify30.metaeuk30.smag30.a3m")])
run_mmseqs(mmseqs, ["rmdb", base.joinpath("uniref.a3m")])
else:
run_mmseqs(mmseqs, ["mvdb", base.joinpath("uniref.a3m"), base.joinpath("final.a3m")])
run_mmseqs(mmseqs, ["rmdb", base.joinpath("uniref.a3m")])
if unpack:
run_mmseqs(mmseqs, ["unpackdb", base.joinpath("final.a3m"), base.joinpath("."), "--unpack-name-mode", "0", "--unpack-suffix", ".a3m"])
run_mmseqs(mmseqs, ["rmdb", base.joinpath("final.a3m")])
if use_templates:
run_mmseqs(mmseqs, ["unpackdb", base.joinpath(f"{template_db}"), base.joinpath("."), "--unpack-name-mode", "0", "--unpack-suffix", ".m8"])
if base.joinpath(f"{template_db}").exists():
run_mmseqs(mmseqs, ["rmdb", base.joinpath(f"{template_db}")])
run_mmseqs(mmseqs, ["rmdb", base.joinpath("prof_res")])
run_mmseqs(mmseqs, ["rmdb", base.joinpath("prof_res_h")])
shutil.rmtree(base.joinpath("tmp"))
if use_templates:
shutil.rmtree(base.joinpath("tmp2"))
if use_env:
shutil.rmtree(base.joinpath("tmp3"))
def mmseqs_search_pair(
dbbase: Path,
base: Path,
uniref_db: Path = Path("uniref30_2302_db"),
spire_db: Path = Path("spire_ctg10_2401_db"),
mmseqs: Path = Path("mmseqs"),
pair_env: bool = True,
prefilter_mode: int = 0,
s: float = 8,
threads: int = 64,
gpu: bool = False,
gpu_server: bool = False,
db_load_mode: int = 2,
pairing_strategy: int = 0,
unpack: bool = True,
):
if not dbbase.joinpath(f"{uniref_db}.dbtype").is_file():
raise FileNotFoundError(f"Database {uniref_db} does not exist")
if (
(
not dbbase.joinpath(f"{uniref_db}.idx").is_file()
and not dbbase.joinpath(f"{uniref_db}.idx.index").is_file()
)
or os.environ.get("MMSEQS_IGNORE_INDEX", False)
):
logger.info("Search does not use index")
db_load_mode = 0
dbSuffix1 = "_seq"
dbSuffix2 = "_aln"
else:
dbSuffix1 = ".idx"
dbSuffix2 = ".idx"
if pair_env:
db = spire_db
output = ".env.paired.a3m"
else:
db = uniref_db
output = ".paired.a3m"
# fmt: off
# @formatter:off
search_param = ["--num-iterations", "3", "--db-load-mode", str(db_load_mode), "-a", "-e", "0.1", "--max-seqs", "10000",]
if gpu:
search_param += ["--gpu", str(gpu), "--prefilter-mode", "1"] # gpu version only supports ungapped prefilter currently
else:
search_param += ["--prefilter-mode", str(prefilter_mode)]
if s is not None: # sensitivy can only be set for non-gpu version, gpu version runs at max sensitivity
search_param += ["-s", "{:.1f}".format(s)]
else:
search_param += ["--k-score", "'seq:96,prof:80'"]
if gpu_server:
search_param += ["--gpu-server", str(gpu_server)]
expand_param = ["--expansion-mode", "0", "-e", "inf", "--expand-filter-clusters", "0", "--max-seq-id", "0.95",]
run_mmseqs(mmseqs, ["search", base.joinpath("qdb"), dbbase.joinpath(db), base.joinpath("res"), base.joinpath("tmp"), "--threads", str(threads),] + search_param,)
run_mmseqs(mmseqs, ["expandaln", base.joinpath("qdb"), dbbase.joinpath(f"{db}{dbSuffix1}"), base.joinpath("res"), dbbase.joinpath(f"{db}{dbSuffix2}"), base.joinpath("res_exp"), "--db-load-mode", str(db_load_mode), "--threads", str(threads),] + expand_param,)
run_mmseqs(mmseqs, ["align", base.joinpath("qdb"), dbbase.joinpath(f"{db}{dbSuffix1}"), base.joinpath("res_exp"), base.joinpath("res_exp_realign"), "--db-load-mode", str(db_load_mode), "-e", "0.001", "--max-accept", "1000000", "--threads", str(threads), "-c", "0.5", "--cov-mode", "1",],)
run_mmseqs(mmseqs, ["pairaln", base.joinpath("qdb"), dbbase.joinpath(f"{db}"), base.joinpath("res_exp_realign"), base.joinpath("res_exp_realign_pair"), "--db-load-mode", str(db_load_mode), "--pairing-mode", str(pairing_strategy), "--pairing-dummy-mode", "0", "--threads", str(threads), ],)
run_mmseqs(mmseqs, ["align", base.joinpath("qdb"), dbbase.joinpath(f"{db}{dbSuffix1}"), base.joinpath("res_exp_realign_pair"), base.joinpath("res_exp_realign_pair_bt"), "--db-load-mode", str(db_load_mode), "-e", "inf", "-a", "--threads", str(threads), ],)
run_mmseqs(mmseqs, ["pairaln", base.joinpath("qdb"), dbbase.joinpath(f"{db}"), base.joinpath("res_exp_realign_pair_bt"), base.joinpath("res_final"), "--db-load-mode", str(db_load_mode), "--pairing-mode", str(pairing_strategy), "--pairing-dummy-mode", "1", "--threads", str(threads),],)
run_mmseqs(mmseqs, ["result2msa", base.joinpath("qdb"), dbbase.joinpath(f"{db}{dbSuffix1}"), base.joinpath("res_final"), base.joinpath("pair.a3m"), "--db-load-mode", str(db_load_mode), "--msa-format-mode", "5", "--threads", str(threads),],)
if unpack:
run_mmseqs(mmseqs, ["unpackdb", base.joinpath("pair.a3m"), base.joinpath("."), "--unpack-name-mode", "0", "--unpack-suffix", output,],)
run_mmseqs(mmseqs, ["rmdb", base.joinpath("pair.a3m")])
run_mmseqs(mmseqs, ["rmdb", base.joinpath("res")])
run_mmseqs(mmseqs, ["rmdb", base.joinpath("res_exp")])
run_mmseqs(mmseqs, ["rmdb", base.joinpath("res_exp_realign")])
run_mmseqs(mmseqs, ["rmdb", base.joinpath("res_exp_realign_pair")])
run_mmseqs(mmseqs, ["rmdb", base.joinpath("res_exp_realign_pair_bt")])
run_mmseqs(mmseqs, ["rmdb", base.joinpath("res_final")])
shutil.rmtree(base.joinpath("tmp"))
# @formatter:on
# fmt: on
def main():
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument(
"query",
type=Path,
help="fasta files with the queries.",
)
parser.add_argument(
"dbbase",
type=Path,
help="The path to the database and indices you downloaded and created with setup_databases.sh",
)
parser.add_argument(
"base", type=Path, help="Directory for the results (and intermediate files)"
)
parser.add_argument(
"--prefilter-mode",
type=int,
default=0,
choices=[0, 1, 2],
help="Prefiltering algorithm to use: 0: k-mer (high-mem), 1: ungapped (high-cpu), 2: exhaustive (no prefilter, very slow). See wiki for more details: https://github.com/sokrypton/ColabFold/wiki#colabfold_search",
)
parser.add_argument(
"-s",
type=float,
default=None,
help="MMseqs2 sensitivity. Lowering this will result in a much faster search but possibly sparser MSAs. By default, the k-mer threshold is directly set to the same one of the server, which corresponds to a sensitivity of ~8.",
)
# dbs are uniref, templates and environmental
# We normally don't use templates
parser.add_argument(
"--db1", type=Path, default=Path("uniref30_2302_db"), help="UniRef database"
)
parser.add_argument("--db2", type=Path, default=Path(""), help="Templates database")
parser.add_argument(
"--db3",
type=Path,
default=Path("colabfold_envdb_202108_db"),
help="Environmental database",
)
parser.add_argument("--db4", type=Path, default=Path("spire_ctg10_2401_db"), help="Environmental pairing database")
# poor man's boolean arguments
parser.add_argument(
"--use-env", type=int, default=1, choices=[0, 1], help="Use --db3"
)
parser.add_argument(
"--use-env-pairing", type=int, default=0, choices=[0, 1], help="Use --db4"
)
parser.add_argument(
"--use-templates", type=int, default=0, choices=[0, 1], help="Use --db2"
)
parser.add_argument(
"--filter",
type=int,
default=1,
choices=[0, 1],
help="Filter the MSA by pre-defined align_eval, qsc, max_accept",
)
# mmseqs params
parser.add_argument(
"--mmseqs",
type=Path,
default=Path("mmseqs"),
help="Location of the mmseqs binary.",
)
parser.add_argument(
"--expand-eval",
type=float,
default=math.inf,
help="e-val threshold for 'expandaln'.",
)
parser.add_argument(
"--align-eval", type=int, default=10, help="e-val threshold for 'align'."
)
parser.add_argument(
"--diff",
type=int,
default=3000,
help="filterresult - Keep at least this many seqs in each MSA block.",
)
parser.add_argument(
"--qsc",
type=float,
default=-20.0,
help="filterresult - reduce diversity of output MSAs using min score thresh.",
)
parser.add_argument(
"--max-accept",
type=int,
default=1000000,
help="align - Maximum accepted alignments before alignment calculation for a query is stopped.",
)
parser.add_argument(
"--pairing_strategy", type=int, default=0, help="pairaln - Pairing strategy."
)
parser.add_argument(
"--db-load-mode",
type=int,
default=0,
help="Database preload mode 0: auto, 1: fread, 2: mmap, 3: mmap+touch",
)
parser.add_argument(
"--unpack", type=int, default=1, choices=[0, 1], help="Unpack results to loose files or keep MMseqs2 databases."
)
parser.add_argument(
"--threads", type=int, default=64, help="Number of threads to use."
)
parser.add_argument(
"--gpu", type=int, default=0, choices=[0, 1], help="Whether to use GPU (1) or not (0). Control number of GPUs with CUDA_VISIBLE_DEVICES env var."
)
parser.add_argument(
"--gpu-server", type=int, default=0, choices=[0, 1], help="Whether to use GPU server (1) or not (0)"
)
args = parser.parse_args()
logging.basicConfig(level = logging.INFO)
queries, is_complex = get_queries(args.query, None)
queries_unique = []
for job_number, (raw_jobname, query_sequences, a3m_lines) in enumerate(queries):
# remove duplicates before searching
query_sequences = (
[query_sequences] if isinstance(query_sequences, str) else query_sequences
)
query_seqs_unique = []
for x in query_sequences:
if x not in query_seqs_unique:
query_seqs_unique.append(x)
query_seqs_cardinality = [0] * len(query_seqs_unique)
for seq in query_sequences:
seq_idx = query_seqs_unique.index(seq)
query_seqs_cardinality[seq_idx] += 1
queries_unique.append([raw_jobname, query_seqs_unique, query_seqs_cardinality])
args.base.mkdir(exist_ok=True, parents=True)
query_file = args.base.joinpath("query.fas")
with query_file.open("w") as f:
for job_number, (
raw_jobname,
query_sequences,
query_seqs_cardinality,
) in enumerate(queries_unique):
for j, seq in enumerate(query_sequences):
# The header of first sequence set as 101
query_seq_headername = 101 + j
f.write(f">{query_seq_headername}\n{seq}\n")
run_mmseqs(
args.mmseqs,
["createdb", query_file, args.base.joinpath("qdb"), "--shuffle", "0"],
)
with args.base.joinpath("qdb.lookup").open("w") as f:
id = 0
file_number = 0
for job_number, (
raw_jobname,
query_sequences,
query_seqs_cardinality,
) in enumerate(queries_unique):
for seq in query_sequences:
raw_jobname_first = raw_jobname.split()[0]
f.write(f"{id}\t{raw_jobname_first}\t{file_number}\n")
id += 1
file_number += 1
mmseqs_search_monomer(
mmseqs=args.mmseqs,
dbbase=args.dbbase,
base=args.base,
uniref_db=args.db1,
template_db=args.db2,
metagenomic_db=args.db3,
use_env=args.use_env,
use_templates=args.use_templates,
filter=args.filter,
expand_eval=args.expand_eval,
align_eval=args.align_eval,
diff=args.diff,
qsc=args.qsc,
max_accept=args.max_accept,
prefilter_mode=args.prefilter_mode,
s=args.s,
db_load_mode=args.db_load_mode,
threads=args.threads,
gpu=args.gpu,
gpu_server=args.gpu_server,
unpack=args.unpack,
)
if is_complex is True:
mmseqs_search_pair(
mmseqs=args.mmseqs,
dbbase=args.dbbase,
base=args.base,
uniref_db=args.db1,
prefilter_mode=args.prefilter_mode,
s=args.s,
db_load_mode=args.db_load_mode,
threads=args.threads,
gpu=args.gpu,
gpu_server=args.gpu_server,
pairing_strategy=args.pairing_strategy,
pair_env=False,
unpack=args.unpack,
)
if args.use_env_pairing:
mmseqs_search_pair(
mmseqs=args.mmseqs,
dbbase=args.dbbase,
base=args.base,
uniref_db=args.db1,
spire_db=args.db4,
prefilter_mode=args.prefilter_mode,
s=args.s,
db_load_mode=args.db_load_mode,
threads=args.threads,
gpu=args.gpu,
gpu_server=args.gpu_server,
pairing_strategy=args.pairing_strategy,
pair_env=True,
unpack=args.unpack,
)
if args.unpack:
id = 0
for job_number, (
raw_jobname,
query_sequences,
query_seqs_cardinality,
) in enumerate(queries_unique):
unpaired_msa = []
paired_msa = None
if len(query_seqs_cardinality) > 1:
paired_msa = []
for seq in query_sequences:
with args.base.joinpath(f"{id}.a3m").open("r") as f:
unpaired_msa.append(f.read())
args.base.joinpath(f"{id}.a3m").unlink()
if args.use_env_pairing:
with open(args.base.joinpath(f"{id}.paired.a3m"), 'a') as file_pair:
with open(args.base.joinpath(f"{id}.env.paired.a3m"), 'r') as file_pair_env:
while chunk := file_pair_env.read(10 * 1024 * 1024):
file_pair.write(chunk)
args.base.joinpath(f"{id}.env.paired.a3m").unlink()
if len(query_seqs_cardinality) > 1:
with args.base.joinpath(f"{id}.paired.a3m").open("r") as f:
paired_msa.append(f.read())
args.base.joinpath(f"{id}.paired.a3m").unlink()
id += 1
msa = msa_to_str(
unpaired_msa, paired_msa, query_sequences, query_seqs_cardinality
)
args.base.joinpath(f"{job_number}.a3m").write_text(msa)
if args.unpack:
# rename a3m files
for job_number, (raw_jobname, query_sequences, query_seqs_cardinality) in enumerate(queries_unique):
os.rename(
args.base.joinpath(f"{job_number}.a3m"),
args.base.joinpath(f"{safe_filename(raw_jobname)}.a3m"),
)
# rename m8 files
if args.use_templates:
id = 0
for raw_jobname, query_sequences, query_seqs_cardinality in queries_unique:
with args.base.joinpath(f"{safe_filename(raw_jobname)}_{args.db2}.m8").open(
"w"
) as f:
for _ in range(len(query_seqs_cardinality)):
with args.base.joinpath(f"{id}.m8").open("r") as g:
f.write(g.read())
os.remove(args.base.joinpath(f"{id}.m8"))
id += 1
run_mmseqs(args.mmseqs, ["rmdb", args.base.joinpath("qdb")])
run_mmseqs(args.mmseqs, ["rmdb", args.base.joinpath("qdb_h")])
query_file.unlink()
if __name__ == "__main__":
main()