This repository was archived by the owner on Mar 15, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathSFE_CC3000_SPI.cpp
633 lines (541 loc) · 16.7 KB
/
SFE_CC3000_SPI.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
/**
* @file SFE_CC3000_SPI.cpp
* @brief CC3000 library functions to handle SPI
* @author Texas Instruments
* @author Modified by Shawn Hymel (SparkFun Electronics)
*
* This code was originally written by TI to work with their microcontrollers.
* Most of it has been altered to work with the Arduino.
*/
/*****************************************************************************
*
* spi.c - CC3000 Host Driver Implementation.
* Copyright (C) 2011 Texas Instruments Incorporated - http://www.ti.com/
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the
* distribution.
*
* Neither the name of Texas Instruments Incorporated nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*****************************************************************************/
#include <Arduino.h>
#include <SPI.h>
#include "common.h"
#include "SFE_CC3000_SPI.h"
#include "utility/hci.h"
#include "utility/evnt_handler.h"
#define READ 3
#define WRITE 1
#define HI(value) (((value) & 0xFF00) >> 8)
#define LO(value) ((value) & 0x00FF)
#define HEADERS_SIZE_EVNT (SPI_HEADER_SIZE + 5)
#define SPI_HEADER_SIZE (5)
#define eSPI_STATE_POWERUP (0)
#define eSPI_STATE_INITIALIZED (1)
#define eSPI_STATE_IDLE (2)
#define eSPI_STATE_WRITE_IRQ (3)
#define eSPI_STATE_WRITE_FIRST_PORTION (4)
#define eSPI_STATE_WRITE_EOT (5)
#define eSPI_STATE_READ_IRQ (6)
#define eSPI_STATE_READ_FIRST_PORTION (7)
#define eSPI_STATE_READ_EOT (8)
typedef struct
{
gcSpiHandleRx SPIRxHandler;
unsigned short usTxPacketLength;
unsigned short usRxPacketLength;
unsigned long ulSpiState;
unsigned char *pTxPacket;
unsigned char *pRxPacket;
}tSpiInformation;
tSpiInformation sSpiInformation;
// buffer for 5 bytes of SPI HEADER
unsigned char tSpiReadHeader[] = {READ, 0, 0, 0, 0};
// The magic number that resides at the end of the TX/RX buffer (1 byte after
// the allocated size) for the purpose of detection of the overrun. The location
// of the memory where the magic number resides shall never be written. In case
// it is written - the overrun occurred and either receive function or send
// function will stuck forever.
#define CC3000_BUFFER_MAGIC_NUMBER (0xDE)
char spi_buffer[CC3000_RX_BUFFER_SIZE];
unsigned char wlan_tx_buffer[CC3000_TX_BUFFER_SIZE];
//*****************************************************************************
//
//! SpiClose
//!
//! @param none
//!
//! @return none
//!
//! @brief Close Spi interface
//
//*****************************************************************************
void SpiClose(void)
{
if (sSpiInformation.pRxPacket)
{
sSpiInformation.pRxPacket = 0;
}
// Disable Interrupt in GPIOA module...
tSLInformation.WlanInterruptDisable();
}
//*****************************************************************************
//
//! SpiOpen
//!
//! @param none
//!
//! @return none
//!
//! @brief Open Spi interface
//
//*****************************************************************************
void SpiOpen(gcSpiHandleRx pfRxHandler)
{
sSpiInformation.ulSpiState = eSPI_STATE_POWERUP;
sSpiInformation.SPIRxHandler = pfRxHandler;
sSpiInformation.usTxPacketLength = 0;
sSpiInformation.pTxPacket = NULL;
sSpiInformation.pRxPacket = (unsigned char *)spi_buffer;
sSpiInformation.usRxPacketLength = 0;
spi_buffer[CC3000_RX_BUFFER_SIZE - 1] = CC3000_BUFFER_MAGIC_NUMBER;
wlan_tx_buffer[CC3000_TX_BUFFER_SIZE - 1] = CC3000_BUFFER_MAGIC_NUMBER;
// Enable interrupt on the GPIOA pin of WLAN IRQ
tSLInformation.WlanInterruptEnable();
}
//*****************************************************************************
//
//! SpiFirstWrite
//!
//! @param ucBuf buffer to write
//! @param usLength buffer's length
//!
//! @return none
//!
//! @brief enter point for first write flow
//
//*****************************************************************************
long SpiFirstWrite(unsigned char *ucBuf, unsigned short usLength)
{
// Save SPI settings
save_spi_params();
// workaround for first transaction
digitalWrite(g_cs_pin, LOW);
// Assuming we are running on 24 MHz ~50 micro delay is 1200 cycles;
delayMicroseconds(50);
// SPI writes first 4 bytes of data
SpiWriteDataSynchronous(ucBuf, 4);
delayMicroseconds(50);
SpiWriteDataSynchronous(ucBuf + 4, usLength - 4);
// From this point on - operate in a regular way
sSpiInformation.ulSpiState = eSPI_STATE_IDLE;
digitalWrite(g_cs_pin, HIGH);
// Restore SPI settings
restore_spi_params();
return(0);
}
//*****************************************************************************
//
//! SpiWrite
//!
//! @param pUserBuffer buffer to write
//! @param usLength buffer's length
//!
//! @return none
//!
//! @brief Spi write operation
//
//*****************************************************************************
long SpiWrite(unsigned char *pUserBuffer, unsigned short usLength)
{
unsigned char ucPad = 0;
// Figure out the total length of the packet in order to figure out if there
// is padding or not
if(!(usLength & 0x0001))
{
ucPad++;
}
pUserBuffer[0] = WRITE;
pUserBuffer[1] = HI(usLength + ucPad);
pUserBuffer[2] = LO(usLength + ucPad);
pUserBuffer[3] = 0;
pUserBuffer[4] = 0;
usLength += (SPI_HEADER_SIZE + ucPad);
// The magic number that resides at the end of the TX/RX buffer (1 byte after
// the allocated size) for the purpose of detection of the overrun. If the
// magic number is overwritten - buffer overrun occurred - and we will stuck
// here forever!
if (wlan_tx_buffer[CC3000_TX_BUFFER_SIZE - 1] != CC3000_BUFFER_MAGIC_NUMBER)
{
while (1)
;
}
if (sSpiInformation.ulSpiState == eSPI_STATE_POWERUP)
{
while (sSpiInformation.ulSpiState != eSPI_STATE_INITIALIZED)
;
}
if (sSpiInformation.ulSpiState == eSPI_STATE_INITIALIZED)
{
// This is time for first TX/RX transactions over SPI: the IRQ is down -
// so need to send read buffer size command
SpiFirstWrite(pUserBuffer, usLength);
}
else
{
// We need to prevent here race that can occur in case 2 back to back
// packets are sent to the device, so the state will move to IDLE and once
//again to not IDLE due to IRQ
tSLInformation.WlanInterruptDisable();
while (sSpiInformation.ulSpiState != eSPI_STATE_IDLE)
{
;
}
sSpiInformation.ulSpiState = eSPI_STATE_WRITE_IRQ;
sSpiInformation.pTxPacket = pUserBuffer;
sSpiInformation.usTxPacketLength = usLength;
// Save SPI settings
save_spi_params();
// Assert the CS line and wait till SSI IRQ line is active and then
// initialize write operation
digitalWrite(g_cs_pin, LOW);
// Re-enable IRQ - if it was not disabled - this is not a problem...
tSLInformation.WlanInterruptEnable();
// check for a missing interrupt between the CS assertion and enabling back the interrupts
if (tSLInformation.ReadWlanInterruptPin() == 0)
{
SpiWriteDataSynchronous(sSpiInformation.pTxPacket, sSpiInformation.usTxPacketLength);
sSpiInformation.ulSpiState = eSPI_STATE_IDLE;
digitalWrite(g_cs_pin, HIGH);
// Restore SPI settings
restore_spi_params();
}
}
// Due to the fact that we are currently implementing a blocking situation
// here we will wait till end of transaction
while (eSPI_STATE_IDLE != sSpiInformation.ulSpiState)
;
return(0);
}
//*****************************************************************************
//
//! SpiWriteDataSynchronous
//!
//! @param data buffer to write
//! @param size buffer's size
//!
//! @return none
//!
//! @brief Spi write operation
//
//*****************************************************************************
void SpiWriteDataSynchronous(unsigned char *data, unsigned short size)
{
while (size)
{
SPI.transfer(*data);
size --;
data++;
}
}
//*****************************************************************************
//
//! SpiReadDataSynchronous
//!
//! @param data buffer to read
//! @param size buffer's size
//!
//! @return none
//!
//! @brief Spi read operation
//
//*****************************************************************************
void SpiReadDataSynchronous(unsigned char *data, unsigned short size)
{
long i = 0;
unsigned char *data_to_send = tSpiReadHeader;
for (i = 0; i < size; i ++)
{
data[i] = SPI.transfer(0x03);
}
}
//*****************************************************************************
//
//! SpiReadHeader
//!
//! \param buffer
//!
//! \return none
//!
//! \brief This function enter point for read flow: first we read minimal 5
//! SPI header bytes and 5 Event Data bytes
//
//*****************************************************************************
void SpiReadHeader(void)
{
SpiReadDataSynchronous(sSpiInformation.pRxPacket, 10);
}
//*****************************************************************************
//
//! SpiReadDataCont
//!
//! @param None
//!
//! @return None
//!
//! @brief This function processes received SPI Header and in accordance with
//! it - continues reading the packet
//
//*****************************************************************************
long SpiReadDataCont(void)
{
long data_to_recv;
unsigned char *evnt_buff, type;
//determine what type of packet we have
evnt_buff = sSpiInformation.pRxPacket;
data_to_recv = 0;
STREAM_TO_UINT8((char *)(evnt_buff + SPI_HEADER_SIZE),
HCI_PACKET_TYPE_OFFSET, type);
switch(type)
{
case HCI_TYPE_DATA:
{
// We need to read the rest of data..
STREAM_TO_UINT16((char *)(evnt_buff + SPI_HEADER_SIZE),
HCI_DATA_LENGTH_OFFSET, data_to_recv);
if (!((HEADERS_SIZE_EVNT + data_to_recv) & 1))
{
data_to_recv++;
}
if (data_to_recv)
{
SpiReadDataSynchronous(evnt_buff + 10, data_to_recv);
}
break;
}
case HCI_TYPE_EVNT:
{
// Calculate the rest length of the data
STREAM_TO_UINT8((char *)(evnt_buff + SPI_HEADER_SIZE),
HCI_EVENT_LENGTH_OFFSET, data_to_recv);
data_to_recv -= 1;
// Add padding byte if needed
if ((HEADERS_SIZE_EVNT + data_to_recv) & 1)
{
data_to_recv++;
}
if (data_to_recv)
{
SpiReadDataSynchronous(evnt_buff + 10, data_to_recv);
}
sSpiInformation.ulSpiState = eSPI_STATE_READ_EOT;
break;
}
}
return (0);
}
//*****************************************************************************
//
//! SpiPauseSpi
//!
//! @param none
//!
//! @return none
//!
//! @brief Spi pause operation
//
//*****************************************************************************
void SpiPauseSpi(void)
{
detachInterrupt(g_int_num);
}
//*****************************************************************************
//
//! SpiResumeSpi
//!
//! @param none
//!
//! @return none
//!
//! @brief Spi resume operation
//
//*****************************************************************************
void SpiResumeSpi(void)
{
attachInterrupt(g_int_num, cc3000_ISR, FALLING);
}
//*****************************************************************************
//
//! SSIContReadOperation
//!
//! @param none
//!
//! @return none
//!
//! @brief SPI read operation
//
//*****************************************************************************
void SSIContReadOperation(void)
{
// The header was read - continue with the payload read
if (!SpiReadDataCont())
{
// All the data was read - finalize handling by switching to the task
// and calling from task Event Handler
SpiTriggerRxProcessing();
}
}
//*****************************************************************************
//
//! SpiTriggerRxProcessing
//!
//! @param none
//!
//! @return none
//!
//! @brief Spi RX processing
//
//*****************************************************************************
void SpiTriggerRxProcessing(void)
{
// Trigger Rx processing
SpiPauseSpi();
digitalWrite(g_cs_pin, HIGH);
// Restore SPI settings
restore_spi_params();
// The magic number that resides at the end of the TX/RX buffer (1 byte
// after the allocated size) for the purpose of detection of the overrun.
// If the magic number is overwritten - buffer overrun occurred - and we
// will stuck here forever!
if (sSpiInformation.pRxPacket[CC3000_RX_BUFFER_SIZE - 1] !=
CC3000_BUFFER_MAGIC_NUMBER)
{
while (1)
;
}
sSpiInformation.ulSpiState = eSPI_STATE_IDLE;
sSpiInformation.SPIRxHandler(sSpiInformation.pRxPacket + SPI_HEADER_SIZE);
}
//*****************************************************************************
// Custom functions
//*****************************************************************************
/**
* @brief Gets the SPI mode from the SPI control register
*
* Returns the SPI mode as given by:
* 0x00 = MODE0
* 0x04 = MODE1
* 0x08 = MODE2
* 0x0C = MODE3
*
* @return The SPI mode
*/
uint8_t get_spi_data_mode(void) {
return (SPCR & SPI_MODE_MASK);
}
/**
* @brief Gets the bit order (MSB or LSB first) of SPI transactions
*
* @return 1 for MSB first, 0 for LSB first
*/
uint8_t get_spi_bit_order(void) {
return bitRead(SPCR, DORD) ? 0 : 1;
}
/**
* @brief Gets the clock divider for SPI
*
* Returns the clock divider for SPI based on the SPCR and SPSR registers.
* 0x00 = DIV4
* 0x01 = DIV16
* 0x02 = DIV64
* 0x03 = DIV128
* 0x04 = DIV2
* 0x05 = DIV8
* 0x06 = DIV32
* 0x07 = DIV64 (not implemented in Arduino)
*
* @return value of SPI2X, SPR1, and SPR0 bits as an unsigned 8-bit integer
*/
uint8_t get_spi_clock_div(void) {
uint8_t clock_div;
clock_div = (SPCR & SPI_CLOCK_MASK);
clock_div = clock_div | ((SPSR & SPI_2XCLOCK_MASK) << 2);
return clock_div;
}
/**
* @brief Saves the current SPI parameters in global variables
*/
void save_spi_params(void) {
/* Save current SPI settings */
g_saved_data_mode = get_spi_data_mode();
g_saved_bit_order = get_spi_bit_order();
g_saved_clock_div = get_spi_clock_div();
/* Set SPI settings for CC3000 */
SPI.setDataMode(SPI_MODE1);
SPI.setBitOrder(MSBFIRST);
SPI.setClockDivider(SPI_CLK_DIV);
}
/**
* @brief Restores the previously saved SPI parameters
*/
void restore_spi_params(void) {
SPI.setDataMode(g_saved_data_mode);
SPI.setBitOrder(g_saved_bit_order);
SPI.setClockDivider(g_saved_clock_div);
}
/**
* @brief Interrupt Service Routine for GPIO interrupt
*/
void cc3000_ISR(void)
{
if (sSpiInformation.ulSpiState == eSPI_STATE_POWERUP)
{
//This means IRQ line was low call a callback of HCI Layer to inform
//on event
sSpiInformation.ulSpiState = eSPI_STATE_INITIALIZED;
}
else if (sSpiInformation.ulSpiState == eSPI_STATE_IDLE)
{
sSpiInformation.ulSpiState = eSPI_STATE_READ_IRQ;
// Save SPI settings
save_spi_params();
//IRQ line goes down - we are start reception
digitalWrite(g_cs_pin, LOW);
// Wait for TX/RX Compete which will come as DMA interrupt
SpiReadHeader();
sSpiInformation.ulSpiState = eSPI_STATE_READ_EOT;
SSIContReadOperation();
}
else if (sSpiInformation.ulSpiState == eSPI_STATE_WRITE_IRQ)
{
SpiWriteDataSynchronous(sSpiInformation.pTxPacket,
sSpiInformation.usTxPacketLength);
sSpiInformation.ulSpiState = eSPI_STATE_IDLE;
digitalWrite(g_cs_pin, HIGH);
// Restore SPI settings
restore_spi_params();
}
}