-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtrainval_model.py
352 lines (304 loc) · 14.9 KB
/
trainval_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
from __future__ import division
import sys
import os
import argparse
import tensorflow as tf
import skimage
from skimage import io as sio
import time
# import matplotlib.pyplot as plt
from get_model import get_segmentation_model
from pydensecrf import densecrf
from util import data_reader
from util.processing_tools import *
from util import im_processing, eval_tools, MovingAverage
def train(max_iter, snapshot, dataset, setname, mu, lr, bs, tfmodel_folder,
conv5, model_name, stop_iter, pre_emb=False):
iters_per_log = 100
data_folder = './' + dataset + '/' + setname + '_batch/'
data_prefix = dataset + '_' + setname
snapshot_file = os.path.join(tfmodel_folder, dataset + '_iter_%d.tfmodel')
if not os.path.isdir(tfmodel_folder):
os.makedirs(tfmodel_folder)
cls_loss_avg = 0
avg_accuracy_all, avg_accuracy_pos, avg_accuracy_neg = 0, 0, 0
decay = 0.99
vocab_size = 8803 if dataset == 'referit' else 12112
emb_name = 'referit' if dataset == 'referit' else 'Gref'
if pre_emb:
print("Use pretrained Embeddings.")
model = get_segmentation_model(model_name, mode='train',
vocab_size=vocab_size, start_lr=lr,
batch_size=bs, conv5=conv5, emb_name=emb_name)
else:
model = get_segmentation_model(model_name, mode='train',
vocab_size=vocab_size, start_lr=lr,
batch_size=bs, conv5=conv5)
weights = './data/weights/deeplab_resnet_init.ckpt'
print("Loading pretrained weights from {}".format(weights))
load_var = {var.op.name: var for var in tf.global_variables()
if var.name.startswith('res') or var.name.startswith('bn') or var.name.startswith('conv1')}
snapshot_loader = tf.train.Saver(load_var)
snapshot_saver = tf.train.Saver(max_to_keep=4)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
sess.run(tf.global_variables_initializer())
snapshot_loader.restore(sess, weights)
im_h, im_w, num_steps = model.H, model.W, model.num_steps
text_batch = np.zeros((bs, num_steps), dtype=np.float32)
image_batch = np.zeros((bs, im_h, im_w, 3), dtype=np.float32)
mask_batch = np.zeros((bs, im_h, im_w, 1), dtype=np.float32)
valid_idx_batch = np.zeros((bs, 1), dtype=np.int32)
reader = data_reader.DataReader(data_folder, data_prefix)
# for time calculate
last_time = time.time()
time_avg = MovingAverage()
for n_iter in range(max_iter):
for n_batch in range(bs):
batch = reader.read_batch(is_log=(n_batch == 0 and n_iter % iters_per_log == 0))
text = batch['text_batch']
im = batch['im_batch'].astype(np.float32)
mask = np.expand_dims(batch['mask_batch'].astype(np.float32), axis=2)
im = im[:, :, ::-1]
im -= mu
text_batch[n_batch, ...] = text
image_batch[n_batch, ...] = im
mask_batch[n_batch, ...] = mask
for idx in range(text.shape[0]):
if text[idx] != 0:
valid_idx_batch[n_batch, :] = idx
break
_, cls_loss_val, lr_val, scores_val, label_val = sess.run([model.train_step,
model.cls_loss,
model.learning_rate,
model.pred,
model.target],
feed_dict={
model.words: text_batch,
# np.expand_dims(text, axis=0),
model.im: image_batch,
# np.expand_dims(im, axis=0),
model.target_fine: mask_batch,
# np.expand_dims(mask, axis=0)
model.valid_idx: valid_idx_batch
})
cls_loss_avg = decay * cls_loss_avg + (1 - decay) * cls_loss_val
# Accuracy
accuracy_all, accuracy_pos, accuracy_neg = compute_accuracy(scores_val, label_val)
avg_accuracy_all = decay * avg_accuracy_all + (1 - decay) * accuracy_all
avg_accuracy_pos = decay * avg_accuracy_pos + (1 - decay) * accuracy_pos
avg_accuracy_neg = decay * avg_accuracy_neg + (1 - decay) * accuracy_neg
# timing
cur_time = time.time()
elapsed = cur_time - last_time
last_time = cur_time
if n_iter % iters_per_log == 0:
print('iter = %d, loss (cur) = %f, loss (avg) = %f, lr = %f'
% (n_iter, cls_loss_val, cls_loss_avg, lr_val))
print('iter = %d, accuracy (cur) = %f (all), %f (pos), %f (neg)'
% (n_iter, accuracy_all, accuracy_pos, accuracy_neg))
print('iter = %d, accuracy (avg) = %f (all), %f (pos), %f (neg)'
% (n_iter, avg_accuracy_all, avg_accuracy_pos, avg_accuracy_neg))
time_avg.add(elapsed)
print('iter = %d, cur time = %.5f, avg time = %.5f, model_name: %s' % (n_iter, elapsed, time_avg.get_avg(), model_name))
# Save snapshot
if (n_iter + 1) % snapshot == 0 or (n_iter + 1) >= max_iter:
snapshot_saver.save(sess, snapshot_file % (n_iter + 1))
print('snapshot saved to ' + snapshot_file % (n_iter + 1))
if (n_iter + 1) >= stop_iter:
print('stop training at iter ' + str(stop_iter))
break
print('Optimization done.')
def test(iter, dataset, visualize, setname, dcrf, mu, tfmodel_folder, model_name, pre_emb=False):
data_folder = './' + dataset + '/' + setname + '_batch/'
data_prefix = dataset + '_' + setname
if visualize:
save_dir = './' + dataset + '/visualization/' + str(iter) + '/'
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
weights = os.path.join(tfmodel_folder, dataset + '_iter_' + str(iter) + '.tfmodel')
print("Loading trained weights from {}".format(weights))
score_thresh = 1e-9
eval_seg_iou_list = [.5, .6, .7, .8, .9]
cum_I, cum_U = 0, 0
mean_IoU, mean_dcrf_IoU = 0, 0
seg_correct = np.zeros(len(eval_seg_iou_list), dtype=np.int32)
if dcrf:
cum_I_dcrf, cum_U_dcrf = 0, 0
seg_correct_dcrf = np.zeros(len(eval_seg_iou_list), dtype=np.int32)
seg_total = 0.
H, W = 320, 320
vocab_size = 8803 if dataset == 'referit' else 12112
emb_name = 'referit' if dataset == 'referit' else 'Gref'
IU_result = list()
if pre_emb:
# use pretrained embbeding
print("Use pretrained Embeddings.")
model = get_segmentation_model(model_name, H=H, W=W,
mode='eval', vocab_size=vocab_size, emb_name=emb_name)
else:
model = get_segmentation_model(model_name, H=H, W=W,
mode='eval', vocab_size=vocab_size)
# Load pretrained model
snapshot_restorer = tf.train.Saver()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
sess.run(tf.global_variables_initializer())
snapshot_restorer.restore(sess, weights)
reader = data_reader.DataReader(data_folder, data_prefix, shuffle=False)
NN = reader.num_batch
for n_iter in range(reader.num_batch):
if n_iter % (NN // 50) == 0:
if n_iter / (NN // 50) % 5 == 0:
sys.stdout.write(str(n_iter / (NN // 50) // 5))
else:
sys.stdout.write('.')
sys.stdout.flush()
batch = reader.read_batch(is_log=False)
text = batch['text_batch']
im = batch['im_batch']
mask = batch['mask_batch'].astype(np.float32)
valid_idx = np.zeros([1], dtype=np.int32)
for idx in range(text.shape[0]):
if text[idx] != 0:
valid_idx[0] = idx
break
proc_im = skimage.img_as_ubyte(im_processing.resize_and_pad(im, H, W))
proc_im_ = proc_im.astype(np.float32)
proc_im_ = proc_im_[:, :, ::-1]
proc_im_ -= mu
scores_val, up_val, sigm_val = sess.run([model.pred, model.up, model.sigm],
feed_dict={
model.words: np.expand_dims(text, axis=0),
model.im: np.expand_dims(proc_im_, axis=0),
model.valid_idx: np.expand_dims(valid_idx, axis=0)
})
# scores_val = np.squeeze(scores_val)
# pred_raw = (scores_val >= score_thresh).astype(np.float32)
up_val = np.squeeze(up_val)
pred_raw = (up_val >= score_thresh).astype(np.float32)
predicts = im_processing.resize_and_crop(pred_raw, mask.shape[0], mask.shape[1])
if dcrf:
# Dense CRF post-processing
sigm_val = np.squeeze(sigm_val)
d = densecrf.DenseCRF2D(W, H, 2)
U = np.expand_dims(-np.log(sigm_val), axis=0)
U_ = np.expand_dims(-np.log(1 - sigm_val), axis=0)
unary = np.concatenate((U_, U), axis=0)
unary = unary.reshape((2, -1))
d.setUnaryEnergy(unary)
d.addPairwiseGaussian(sxy=3, compat=3)
d.addPairwiseBilateral(sxy=20, srgb=3, rgbim=proc_im, compat=10)
Q = d.inference(5)
pred_raw_dcrf = np.argmax(Q, axis=0).reshape((H, W)).astype(np.float32)
predicts_dcrf = im_processing.resize_and_crop(pred_raw_dcrf, mask.shape[0], mask.shape[1])
if visualize:
sent = batch['sent_batch'][0]
visualize_seg(im, mask, predicts, sent)
if dcrf:
visualize_seg(im, mask, predicts_dcrf, sent)
I, U = eval_tools.compute_mask_IU(predicts, mask)
IU_result.append({'batch_no': n_iter, 'I': I, 'U': U})
mean_IoU += float(I) / U
cum_I += I
cum_U += U
msg = 'cumulative IoU = %f' % (cum_I / cum_U)
for n_eval_iou in range(len(eval_seg_iou_list)):
eval_seg_iou = eval_seg_iou_list[n_eval_iou]
seg_correct[n_eval_iou] += (I / U >= eval_seg_iou)
if dcrf:
I_dcrf, U_dcrf = eval_tools.compute_mask_IU(predicts_dcrf, mask)
mean_dcrf_IoU += float(I_dcrf) / U_dcrf
cum_I_dcrf += I_dcrf
cum_U_dcrf += U_dcrf
msg += '\tcumulative IoU (dcrf) = %f' % (cum_I_dcrf / cum_U_dcrf)
for n_eval_iou in range(len(eval_seg_iou_list)):
eval_seg_iou = eval_seg_iou_list[n_eval_iou]
seg_correct_dcrf[n_eval_iou] += (I_dcrf / U_dcrf >= eval_seg_iou)
# print(msg)
seg_total += 1
# Print results
print('Segmentation evaluation (without DenseCRF):')
result_str = ''
for n_eval_iou in range(len(eval_seg_iou_list)):
result_str += 'precision@%s = %f\n' % \
(str(eval_seg_iou_list[n_eval_iou]), seg_correct[n_eval_iou] / seg_total)
result_str += 'overall IoU = %f; mean IoU = %f\n' % (cum_I / cum_U, mean_IoU / seg_total)
print(result_str)
if dcrf:
print('Segmentation evaluation (with DenseCRF):')
result_str = ''
for n_eval_iou in range(len(eval_seg_iou_list)):
result_str += 'precision@%s = %f\n' % \
(str(eval_seg_iou_list[n_eval_iou]), seg_correct_dcrf[n_eval_iou] / seg_total)
result_str += 'overall IoU = %f; mean IoU = %f\n' % (cum_I_dcrf / cum_U_dcrf, mean_dcrf_IoU / seg_total)
print(result_str)
def visualize_seg(im, mask, predicts, sent):
# print("visualizing")
vis_dir = "./visualize/lgcr_best_c5map/unc/testA"
sent_dir = os.path.join(vis_dir, sent)
if not os.path.exists(sent_dir):
os.makedirs(sent_dir)
# Ignore sio warnings of low-contrast image.
import warnings
warnings.filterwarnings('ignore')
sio.imsave(os.path.join(sent_dir, "im.png"), im)
im_gt = np.zeros_like(im)
im_gt[:, :, 2] = 170
im_gt[:, :, 0] += mask.astype('uint8') * 170
im_gt = im_gt.astype('int16')
im_gt[:, :, 2] += mask.astype('int16') * (-170)
im_gt = im_gt.astype('uint8')
sio.imsave(os.path.join(sent_dir, "gt.png"), im_gt)
im_seg = im / 2
im_seg[:, :, 0] += predicts.astype('uint8') * 100
im_seg = im_seg.astype('uint8')
sio.imsave(os.path.join(sent_dir, "pred.png"), im_seg)
# plt.imshow(im_seg.astype('uint8'))
# plt.title(sent)
# plt.show()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-g', type=str, default='0')
parser.add_argument('-i', type=int, default=800000)
parser.add_argument('-s', type=int, default=100000)
parser.add_argument('-st', type=int, default=700000) # stop training when get st iters
parser.add_argument('-m', type=str) # 'train' 'test'
parser.add_argument('-d', type=str, default='referit') # 'Gref' 'unc' 'unc+' 'referit'
parser.add_argument('-t', type=str) # 'train' 'trainval' 'val' 'test' 'testA' 'testB'
parser.add_argument('-f', type=str) # directory to save models
parser.add_argument('-lr', type=float, default=0.00025) # start learning rate
parser.add_argument('-bs', type=int, default=1) # batch size
parser.add_argument('-v', default=False, action='store_true') # visualization
parser.add_argument('-c', default=False, action='store_true') # whether or not apply DenseCRF
parser.add_argument('-emb', default=False, action='store_true') # whether or not use Pretrained Embeddings
parser.add_argument('-n', type=str, default='') # select model
parser.add_argument('-conv5', default=False, action='store_true') # finetune conv layers
args = parser.parse_args()
# os.environ['CUDA_VISIBLE_DEVICES'] = args.g
mu = np.array((104.00698793, 116.66876762, 122.67891434))
if args.m == 'train':
train(max_iter=args.i,
snapshot=args.s,
dataset=args.d,
setname=args.t,
mu=mu,
lr=args.lr,
bs=args.bs,
tfmodel_folder=args.f,
conv5=args.conv5,
model_name=args.n,
stop_iter=args.st,
pre_emb=args.emb)
elif args.m == 'test':
test(iter=args.i,
dataset=args.d,
visualize=args.v,
setname=args.t,
dcrf=args.c,
mu=mu,
tfmodel_folder=args.f,
model_name=args.n,
pre_emb=args.emb)