Skip to content

Commit 58ef9be

Browse files
authored
[mlir][math] Implement alternative decomposition for tanh (llvm#85025)
The previous implementation decomposes `tanh(x)` into `(exp(2x) - 1)/(exp(2x)+1), x < 0` `(1 - exp(-2x))/(1 + exp(-2x)), x >= 0` This is fine as it avoids overflow with the exponential, but the whole decomposition is computed for both cases unconditionally, then the result is chosen based off the sign of the input. This results in doing two expensive `exp` computations. The proposed change avoids doing the whole computation twice by exploiting the reflection symmetry `tanh(-x) = -tanh(x)`. We can "normalize" the input to be positive by setting `y = sign(x) * x`, where the sign of `x` is computed as `sign(x) = (float)(x > 0) * (-2) + 1`. Then compute `z = tanh(y)` with the decomposition above for `x >=0` and "denormalize" the result `z * sign(x)` to retain the sign. The reason it is done this way is that it is very amenable to vectorization. This method trades the duplicate decomposition computations (which takes 5 instructions including an extra expensive `exp` and `div`) for 4 cheap instructions to compute the signs value 1. `arith.cmpf` (which is a pre-existing instruction in the previous impl) 2. `arith.sitofp` 3. `arith.mulf` 4. `arith.addf` and 1 more instruction to get the right sign in the result 5. `arith.mulf`. Moreover, numerically, this implementation will yield the exact same results as the previous implementation.
1 parent ad0de4e commit 58ef9be

File tree

2 files changed

+32
-27
lines changed

2 files changed

+32
-27
lines changed

mlir/lib/Dialect/Math/Transforms/ExpandPatterns.cpp

+23-17
Original file line numberDiff line numberDiff line change
@@ -91,34 +91,40 @@ static LogicalResult convertCoshOp(math::CoshOp op, PatternRewriter &rewriter) {
9191
}
9292

9393
/// Expands tanh op into
94-
/// 1) 1-exp^{-2x} / 1+exp^{-2x}, if x => 0
95-
/// 2) exp^{2x}-1 / exp^{2x}+1 , if x < 0
94+
/// 1-exp^{-2x} / 1+exp^{-2x}
95+
/// To avoid overflow we exploit the reflection symmetry `tanh(-x) = -tanh(x)`.
96+
/// We compute a "signs" value which is -1 if input is negative and +1 if input
97+
/// is positive. Then multiply the input by this value, guaranteeing that the
98+
/// result is positive, which also guarantees `exp^{-2x * sign(x)}` is in (0,
99+
/// 1]. Expand the computation on the input `x * sign(x)`, then multiply the
100+
/// result by `sign(x)` to retain sign of the real result.
96101
static LogicalResult convertTanhOp(math::TanhOp op, PatternRewriter &rewriter) {
97102
auto floatType = op.getOperand().getType();
98103
Location loc = op.getLoc();
104+
Value zero = createFloatConst(loc, floatType, 0.0, rewriter);
99105
Value one = createFloatConst(loc, floatType, 1.0, rewriter);
100-
Value two = createFloatConst(loc, floatType, 2.0, rewriter);
101-
Value doubledX = rewriter.create<arith::MulFOp>(loc, op.getOperand(), two);
106+
Value negTwo = createFloatConst(loc, floatType, -2.0, rewriter);
107+
108+
// Compute sign(x) = cast<float_type>(x < 0) * (-2) + 1
109+
Value sign = rewriter.create<arith::CmpFOp>(loc, arith::CmpFPredicate::OLT,
110+
op.getOperand(), zero);
111+
sign = rewriter.create<arith::SIToFPOp>(loc, floatType, sign);
112+
sign = rewriter.create<arith::MulFOp>(loc, sign, negTwo);
113+
sign = rewriter.create<arith::AddFOp>(loc, sign, one);
102114

103-
// Case 1: tanh(x) = 1-exp^{-2x} / 1+exp^{-2x}
104-
Value negDoubledX = rewriter.create<arith::NegFOp>(loc, doubledX);
115+
// Normalize input to positive value: y = sign(x) * x
116+
Value positiveX = rewriter.create<arith::MulFOp>(loc, sign, op.getOperand());
117+
118+
// Decompose on normalized input
119+
Value negDoubledX = rewriter.create<arith::MulFOp>(loc, negTwo, positiveX);
105120
Value exp2x = rewriter.create<math::ExpOp>(loc, negDoubledX);
106121
Value dividend = rewriter.create<arith::SubFOp>(loc, one, exp2x);
107122
Value divisor = rewriter.create<arith::AddFOp>(loc, one, exp2x);
108123
Value positiveRes = rewriter.create<arith::DivFOp>(loc, dividend, divisor);
109124

110-
// Case 2: tanh(x) = exp^{2x}-1 / exp^{2x}+1
111-
exp2x = rewriter.create<math::ExpOp>(loc, doubledX);
112-
dividend = rewriter.create<arith::SubFOp>(loc, exp2x, one);
113-
divisor = rewriter.create<arith::AddFOp>(loc, exp2x, one);
114-
Value negativeRes = rewriter.create<arith::DivFOp>(loc, dividend, divisor);
125+
// Multiply result by sign(x) to retain signs from negative inputs
126+
rewriter.replaceOpWithNewOp<arith::MulFOp>(op, sign, positiveRes);
115127

116-
// tanh(x) = x >= 0 ? positiveRes : negativeRes
117-
Value zero = createFloatConst(loc, floatType, 0.0, rewriter);
118-
Value cmpRes = rewriter.create<arith::CmpFOp>(loc, arith::CmpFPredicate::OGE,
119-
op.getOperand(), zero);
120-
rewriter.replaceOpWithNewOp<arith::SelectOp>(op, cmpRes, positiveRes,
121-
negativeRes);
122128
return success();
123129
}
124130

mlir/test/Dialect/Math/expand-math.mlir

+9-10
Original file line numberDiff line numberDiff line change
@@ -7,19 +7,18 @@ func.func @tanh(%arg: f32) -> f32 {
77
}
88
// CHECK-DAG: %[[ZERO:.+]] = arith.constant 0.000000e+00 : f32
99
// CHECK-DAG: %[[ONE:.+]] = arith.constant 1.000000e+00 : f32
10-
// CHECK-DAG: %[[TWO:.+]] = arith.constant 2.000000e+00 : f32
11-
// CHECK: %[[DOUBLEDX:.+]] = arith.mulf %arg0, %[[TWO]] : f32
12-
// CHECK: %[[NEGDOUBLEDX:.+]] = arith.negf %[[DOUBLEDX]] : f32
10+
// CHECK-DAG: %[[TWO:.+]] = arith.constant -2.000000e+00 : f32
11+
// CHECK: %[[VAL0:.+]] = arith.cmpf olt, %arg0, %[[ZERO]] : f32
12+
// CHECK: %[[VAL1:.+]] = arith.sitofp %[[VAL0]] : i1 to f32
13+
// CHECK: %[[VAL2:.+]] = arith.mulf %[[VAL1]], %[[TWO]] : f32
14+
// CHECK: %[[SIGN:.+]] = arith.addf %[[VAL2]], %[[ONE]] : f32
15+
// CHECK: %[[POSX:.+]] = arith.mulf %[[SIGN]], %arg0 : f32
16+
// CHECK: %[[NEGDOUBLEDX:.+]] = arith.mulf %[[POSX]], %[[TWO]] : f32
1317
// CHECK: %[[EXP1:.+]] = math.exp %[[NEGDOUBLEDX]] : f32
1418
// CHECK: %[[DIVIDEND1:.+]] = arith.subf %[[ONE]], %[[EXP1]] : f32
1519
// CHECK: %[[DIVISOR1:.+]] = arith.addf %[[EXP1]], %[[ONE]] : f32
16-
// CHECK: %[[RES1:.+]] = arith.divf %[[DIVIDEND1]], %[[DIVISOR1]] : f32
17-
// CHECK: %[[EXP2:.+]] = math.exp %[[DOUBLEDX]] : f32
18-
// CHECK: %[[DIVIDEND2:.+]] = arith.subf %[[EXP2]], %[[ONE]] : f32
19-
// CHECK: %[[DIVISOR2:.+]] = arith.addf %[[EXP2]], %[[ONE]] : f32
20-
// CHECK: %[[RES2:.+]] = arith.divf %[[DIVIDEND2]], %[[DIVISOR2]] : f32
21-
// CHECK: %[[COND:.+]] = arith.cmpf oge, %arg0, %[[ZERO]] : f32
22-
// CHECK: %[[RESULT:.+]] = arith.select %[[COND]], %[[RES1]], %[[RES2]] : f32
20+
// CHECK: %[[POSRES:.+]] = arith.divf %[[DIVIDEND1]], %[[DIVISOR1]] : f32
21+
// CHECK: %[[RESULT:.+]] = arith.mulf %[[SIGN]], %[[POSRES]] : f32
2322
// CHECK: return %[[RESULT]]
2423

2524
// -----

0 commit comments

Comments
 (0)