-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdata_Classif_batchtools.R
95 lines (89 loc) · 2.76 KB
/
data_Classif_batchtools.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
library(data.table)
library(ggplot2)
data.vec <- c(
"CIFAR10_N=5623",
"FashionMNIST_N=10000",
"MNIST_N=18032",
"STL10_N=1778")
data.table(pre=data.vec)[, data.table(
seed_csv=Sys.glob(paste0("data_Classif_scaled/",pre,"_seed*.csv"))
)[, fread(seed_csv,nrow=1),by=seed_csv]
]#check if weights are different in different seed files.
param.dt <- data.table(pre=data.vec)[, CJ(
seed_csv=Sys.glob(paste0("data_Classif_scaled/",pre,"_seed*.csv")),
loss=c("SquaredHinge","Logistic","AUM"),
lr=10^seq(-4,5)
), by=pre]
run_one <- function(seed_csv, loss, lr, ...){
py.cmd <- paste(
"module load anaconda3 &&",
"conda activate torch2 &&",
"python data_Classif.py",
seed_csv, loss, lr)
print(py.cmd)
system(py.cmd)
}
reg.dir <- "data_Classif_batchtools"
unlink(reg.dir, recursive=TRUE)
reg <- batchtools::makeRegistry(reg.dir)
batchtools::batchMap(run_one, args=param.dt)
if(FALSE){
batchtools::testJob(1,reg=reg)
}
(job.table <- batchtools::getJobTable(reg=reg))
chunks <- data.frame(job.table, chunk=1)
batchtools::submitJobs(chunks, resources=list(
walltime = 4*60*60,#seconds
memory = 8000,#megabytes per cpu
ncpus=1, #>1 for multicore/parallel jobs.
ntasks=1, #>1 for MPI jobs.
chunks.as.arrayjobs=TRUE), reg=reg)
reg <- batchtools::loadRegistry(reg.dir)
batchtools::getStatus(reg=reg)
result.old <- if(file.exists("data_Classif_batchtools.csv")){
fread("data_Classif_batchtools.csv")
}else{
data.table()
}
f <- function(vname,...)list("_",nc::field(vname,"=",".*?",...))
result.new <- nc::capture_first_glob(
"data_Classif_constant/*.csv",
#"data_Classif_constant/STL10_N=1778_seed=4_lr=1.0_loss=SquaredHinge.csv"
"/",
data.name=".*?",
f("N",as.integer),
f("seed",as.integer),
f("lr",as.numeric),
f("loss"),
"[.]csv")
result.dt <- rbind(result.old, result.new)
fwrite(result.dt, "data_Classif_batchtools.csv")
unlink("data_Classif_constant/*.csv")
best.valid <- result.dt[
set_name=="validation",
.SD[which.max(auc)],
keyby=.(data.name,N,loss,seed)]
result.dt[step_number==0 & lr==1 & set_name=="subtrain"][order(data.name,loss,seed), .(data.name,loss,seed,auc)]##these should be different.
select.dt <- best.valid[, .(data.name, N, seed, loss, lr)]
select.result <- result.dt[select.dt, on=names(select.dt)]
gg <- ggplot()+
geom_line(aes(
step_number, auc,
color=loss),
data=select.result[set_name=="validation"])+
## geom_line(aes(
## step_number, auc,
## linetype=set_name,
## color=loss),
## data=select.result)+
geom_point(aes(
step_number, auc,
color=loss),
fill="black",
shape=21,
data=best.valid)+
scale_x_log10()+
facet_grid(data.name+N~seed, labeller=label_both, scales="free")
png("data_Classif_batchtools.png", width=14, height=8, units="in", res=200)
print(gg)
dev.off()