|
| 1 | +#' @title Compute convex hull in half-space form |
| 2 | +#' @param points A matrix or data frame of numeric coordinates, size n x d |
| 3 | +#' @keywords internal |
| 4 | +#' |
| 5 | +#' @return A list with elements: |
| 6 | +#' - A: a matrix of size m x d (m = number of facets) |
| 7 | +#' - b: a length-m vector |
| 8 | +#' so that x is inside the hull if and only if A %*% x + b >= 0 (for all rows). |
| 9 | +#' - volume: Total volume of the convex hull |
| 10 | +convhull_halfspace = function(points) { |
| 11 | + pts_mat = as.matrix(points) |
| 12 | + |
| 13 | + ch = geometry::convhulln(pts_mat, options = "Fa", output.options = "n") |
| 14 | + chvol = geometry::convhulln(pts_mat, options = "Fa", output.options = "FA") |
| 15 | + |
| 16 | + hull_facets = ch$hull |
| 17 | + facet_norms = ch$normals |
| 18 | + |
| 19 | + m = nrow(facet_norms) # number of facets |
| 20 | + d = ncol(facet_norms) # dimension |
| 21 | + |
| 22 | + A = facet_norms[,seq_len(d-1), drop=FALSE] |
| 23 | + b = facet_norms[,d] |
| 24 | + |
| 25 | + list( |
| 26 | + A = A, |
| 27 | + b = b, |
| 28 | + volume = chvol$vol |
| 29 | + ) |
| 30 | +} |
| 31 | + |
| 32 | +#' @title Interpolate points within a convex hull |
| 33 | +#' |
| 34 | +#' @param points A numeric matrix (n x d). |
| 35 | +#' @param ch_halfspace Convex hull. Output of `convhull_halfspace` |
| 36 | +#' @param n_samples_per_dimension Number of samples per dimension (pre filtering) to take |
| 37 | +#' |
| 38 | +#' @keywords internal |
| 39 | +#' |
| 40 | +#' @return A list with: |
| 41 | +#' - data: The interpolated points |
| 42 | +#' - on_edge: A logical vector indicating whether the points |
| 43 | +#' |
| 44 | +interpolate_convex_hull = function(points, ch_halfspace, n_samples_per_dimension = 11) { |
| 45 | + stopifnot(is.matrix(points), ncol(points) >= 2) |
| 46 | + |
| 47 | + facet_normals = ch_halfspace$A # same number of rows as hull_facets |
| 48 | + facet_offsets = ch_halfspace$b # same number of rows as hull_facets |
| 49 | + |
| 50 | + ranges = apply(points, 2, range) |
| 51 | + |
| 52 | + eg_list = list() |
| 53 | + for(i in seq_len(ncol(ranges))) { |
| 54 | + eg_list[[i]] = seq(ranges[1,i], ranges[2,i], length.out=n_samples_per_dimension) |
| 55 | + } |
| 56 | + numeric_eg = do.call(expand.grid,args = eg_list) |
| 57 | + filter_pts_edge = rep(FALSE, nrow(numeric_eg)) |
| 58 | + filter_pts = rep(TRUE, nrow(numeric_eg)) |
| 59 | + |
| 60 | + for(i in seq_len(nrow(facet_normals))) { |
| 61 | + vec_single = facet_normals[i,] |
| 62 | + proj_pts = apply(numeric_eg, 1, \(x) sum(x*vec_single) + facet_offsets[i]) |
| 63 | + filter_pts = filter_pts & proj_pts < 1e-8 |
| 64 | + filter_pts_edge = filter_pts_edge | abs(proj_pts) < 1e-8 |
| 65 | + } |
| 66 | + return(list(data=numeric_eg[which(filter_pts),,drop=FALSE], |
| 67 | + on_edge = filter_pts_edge[filter_pts])) |
| 68 | +} |
| 69 | + |
| 70 | +#' @title Approximate continuous moment matrix over a numeric bounding box |
| 71 | +#' |
| 72 | +#' @description Treats the min–max range of each numeric column as a bounding box |
| 73 | +#' and samples points uniformly to approximate the integral of the outer product of |
| 74 | +#' the model terms, weighted by whether the point |
| 75 | +#' is on the edge. |
| 76 | +#' |
| 77 | +#' @param data Candidate set |
| 78 | +#' @param formula Default `~ .`. Model formula specifying the terms. |
| 79 | +#' @param n_samples_per_dimension Default `100`. Number of samples to take per dimension when interpolating inside |
| 80 | +#' the convex hull. |
| 81 | +#' |
| 82 | +#' @keywords internal |
| 83 | +#' @return A matrix of size `p x p` (where `p` is the number of columns in the model matrix), |
| 84 | +#' approximating the continuous moment matrix. |
| 85 | +#' |
| 86 | +gen_momentsmatrix_continuous = function( |
| 87 | + formula = ~ ., |
| 88 | + candidate_set, |
| 89 | + n_samples_per_dimension |
| 90 | +) { |
| 91 | + # Identify numeric columns (continuous factors) |
| 92 | + is_numeric_col = vapply(candidate_set, is.numeric, logical(1)) |
| 93 | + numeric_cols = names(candidate_set)[is_numeric_col] |
| 94 | + factor_cols = names(candidate_set)[!is_numeric_col] |
| 95 | + |
| 96 | + if (length(numeric_cols) == 0) { |
| 97 | + stop("No numeric columns found in data. Cannot compute continuous bounding box.") |
| 98 | + } |
| 99 | + # Detect any disallowed combinations |
| 100 | + unique_vals = prod(vapply(candidate_set, \(x) {length(unique(x))}, FUN.VALUE = integer(1))) |
| 101 | + any_disallowed = unique_vals != nrow(candidate_set) |
| 102 | + |
| 103 | + # Simple if all numeric: just integrate over the region. |
| 104 | + if(length(factor_cols) == 0) { |
| 105 | + sub_candidate_set = as.matrix(candidate_set) |
| 106 | + ch = convhull_halfspace(sub_candidate_set) |
| 107 | + if (ch$volume <= 0) { |
| 108 | + next |
| 109 | + } |
| 110 | + vol = ch$volume |
| 111 | + interp_ch = interpolate_convex_hull(as.matrix(sub_candidate_set), ch, n_samples_per_dimension = n_samples_per_dimension) |
| 112 | + new_pts_ch = interp_ch$data |
| 113 | + |
| 114 | + colnames(new_pts_ch) = numeric_cols |
| 115 | + interp_df = as.data.frame(new_pts_ch) |
| 116 | + |
| 117 | + # Now build model matrix |
| 118 | + Xsub = model.matrix(formula, data = interp_df) |
| 119 | + |
| 120 | + w = rep(1, nrow(Xsub)) |
| 121 | + w[interp_ch$on_edge] = 0.5 |
| 122 | + # average subregion moment |
| 123 | + Xsub_w = apply(Xsub,2,\(x) x*sqrt(w)) |
| 124 | + # M_sub = crossprod(Xsub) / sum(w) |
| 125 | + |
| 126 | + M_sub = crossprod(Xsub_w) / sum(w) |
| 127 | + |
| 128 | + # Weighted accumulation |
| 129 | + if (is.null(M_acc)) { |
| 130 | + M_acc = vol * M_sub |
| 131 | + } else { |
| 132 | + M_acc = M_acc + vol * M_sub |
| 133 | + } |
| 134 | + total_weight = total_weight + vol |
| 135 | + #Scale by the intercept |
| 136 | + if(colnames(M)[1] == "(Intercept)") { |
| 137 | + M = M / M[1,1] |
| 138 | + } |
| 139 | + return(M) |
| 140 | + } else { |
| 141 | + # For categorical factors with disallowed combinations, we need to account for the |
| 142 | + # reduced domain of the integral. We'll calculate a moment matrix as above for each |
| 143 | + # factor level combination, weigh it by the total number of points, and sum it. That |
| 144 | + # will give us the average prediction variance for the constrained region. |
| 145 | + unique_combos = unique(candidate_set[,factor_cols,drop = FALSE]) |
| 146 | + |
| 147 | + get_contrasts_from_candset = function(candset) { |
| 148 | + csn = colnames(candset)[!unlist(lapply(candset, is.numeric))] |
| 149 | + lapply(csn, |
| 150 | + \(x) { |
| 151 | + setNames( |
| 152 | + list(skpr::contr.simplex), |
| 153 | + x[[1]]) |
| 154 | + }) |> unlist() |
| 155 | + } |
| 156 | + |
| 157 | + # We'll accumulate a weighted sum of sub-matrices |
| 158 | + M_acc = NULL |
| 159 | + total_weight = 0 |
| 160 | + |
| 161 | + for (r in seq_len(nrow(unique_combos))) { |
| 162 | + combo_row = unique_combos[r, , drop=FALSE] |
| 163 | + |
| 164 | + # subset of 'candidate_set' that matches this combo |
| 165 | + is_match = TRUE |
| 166 | + for (fc in factor_cols) { |
| 167 | + is_match = is_match & (candidate_set[[fc]] == combo_row[[fc]]) |
| 168 | + } |
| 169 | + sub_candidate_set = candidate_set[is_match, , drop=FALSE] |
| 170 | + sub_candidate_set = sub_candidate_set[,is_numeric_col] |
| 171 | + # If no rows => disallowed or doesn't appear => skip |
| 172 | + if (!nrow(sub_candidate_set)) { |
| 173 | + next |
| 174 | + } |
| 175 | + |
| 176 | + # Calculate the convex hull and sample points |
| 177 | + ch = convhull_halfspace(sub_candidate_set) |
| 178 | + if (ch$volume <= 0) { |
| 179 | + next |
| 180 | + } |
| 181 | + vol = ch$volume |
| 182 | + interp_ch = interpolate_convex_hull(as.matrix(sub_candidate_set), ch, n_samples_per_dimension = n_samples_per_dimension) |
| 183 | + new_pts_ch = interp_ch$data |
| 184 | + |
| 185 | + colnames(new_pts_ch) = numeric_cols |
| 186 | + interp_df = as.data.frame(new_pts_ch) |
| 187 | + |
| 188 | + # Pin the factor columns at this combo |
| 189 | + for (fc in factor_cols) { |
| 190 | + interp_df[[fc]] = combo_row[[fc]] |
| 191 | + } |
| 192 | + |
| 193 | + # Now build model matrix |
| 194 | + Xsub = model.matrix(formula, data = interp_df, contrasts.arg = get_contrasts_from_candset(candidate_set)) |
| 195 | + |
| 196 | + w = rep(1, nrow(Xsub)) |
| 197 | + w[interp_ch$on_edge] = 0.5 |
| 198 | + # average subregion moment |
| 199 | + Xsub_w = apply(Xsub,2,\(x) x*sqrt(w)) |
| 200 | + # M_sub = crossprod(Xsub) / sum(w) |
| 201 | + |
| 202 | + M_sub = crossprod(Xsub_w) / sum(w) |
| 203 | + |
| 204 | + # Weighted accumulation |
| 205 | + if (is.null(M_acc)) { |
| 206 | + M_acc = vol * M_sub |
| 207 | + } else { |
| 208 | + M_acc = M_acc + vol * M_sub |
| 209 | + } |
| 210 | + total_weight = total_weight + vol |
| 211 | + } |
| 212 | + |
| 213 | + M = M_acc / total_weight |
| 214 | + #Scale by the intercept |
| 215 | + if(colnames(M)[1] == "(Intercept)") { |
| 216 | + M = M / M[1,1] |
| 217 | + } |
| 218 | + return(M) |
| 219 | + } |
| 220 | +} |
0 commit comments