
CSC1002 – Computa.onal Laboratory

Console-Based Editor - Basic - 2025

OVERVIEW

In this assignment, you are going to design and develop a simple, basic console-based editor. Unlike the
modern, advanced editor which provides a sophis.cated edi.ng environment, u.lizing the high-
resolu.on of the graphical screen together with the mouse and the keyboard to posi.on and adjust any
text and figures displayed on the screen, giving us the WYSIWYG (What-You-See-Is-What-You-Get)
experience.

In the early days, lacking access to a rich graphical display and mouse, the func.onality of editors was
limited, providing only a much simpler user interface, usually console-based. Edi.ng was carried out
based on simple text commands entered via the keyboard, commands such as inser.ng (i) and
appending (a) a text string, posi.oning the editor cursor one character posi.on to the leO (h), one
character posi.on to the right (l), one-word posi.on forwards (w), one-word posi.on backwards (b), and
so on.

CSC1002 – 2025 Winter By Kinley Lam

CSC1002 – Computa.onal Laboratory

SCOPE
1. Complete all the following editor commands:

 NOTE: Refer to the sec.on “Specific Spec” for more informa.on on par.cular requirements.

2. Case-sensi.ve commands - all editor commands are case-sensi.ve, for example, the capital
le[er ‘A’ does not equal the lowercase le[er ‘a’.

3. Command types - most commands are single-le[er (in lower case) commands (such as ?, $, x, ^,
…etc), while some are two-le[er (such as dw). Most commands do not require extra input,
while a few do, such as insert (i) and append (a).

4. Command prompt (>) - The prompt is a single character string ‘>’. See the screenshots on the
first page.

5. Command Syntax - “Command[Text]”, where “Command” is one of the commands shown in
step 1, and “Text” applies only to commands requiring extra input such as insert (i) and append
(a). Note: any commands whose descrip.on includes a substring enclosed in “<>” brackets
require extra input “Text”.

6. Command Parsing - the user types a single command and then presses the return key to
con.nue. Parse each command string according to “Command Syntax” to ensure that the input
string matches EXACTLY one of the commands from step 1, including the extra input “Text” if
required. When invalid input is entered, simply display another prompt as illustrated in the
following screenshot.

CSC1002 – 2025 Winter By Kinley Lam

CSC1002 – Computa.onal Laboratory

a. Examples of valid command input:

i. “$”

ii. “^”

iii. “h”

iv. “x”

v. “ahello world”

vi. “i hello world “

b. Examples of invalid command input:

i. “ $”

ii. “ ?”

iii. “? “

iv. “ ahello world”

v. “i”

7. Command Execu.on - the editor will repeatedly prompt the user to enter an editor command,
execute the command, and then output the updated content on the display console (except for
commands ‘?’ and ‘q’, see Note follows). AOer the updated content is displayed, the editor will
display a new prompt on a new line. Refer to the sec.on “Sample Output” for more examples.

Note: when the help command (?) is entered, output only the help menu as shown in step 1;
when the quit command (‘q’) is entered, terminate the program.

NOTE:

• Keep your en.re source code in ONE SINGLE file.

• Use only Python modules as specified in the “Permi[ed Modules” sec.on.

• In your design s.ck ONLY to func.ons, in other words, no class objects of your own.

o Furthermore, the lines of code containing the sub-func.on(s) defined within another
func.on will be counted as part of the parent func.on.

o NOTE: Failure to adhere to the instruc.ons outlined in the assignment handout will
result in a 50% reduc.on in the coding style score.

CSC1002 – 2025 Winter By Kinley Lam

CSC1002 – Computa.onal Laboratory

SPECIFIC SPEC
1. Editor content - the editor shows its content, if any, as a single line of text string constructed by

one or mul.ple Insert/Append commands. If the row cursor is enabled, it shows its posi.on in a
color such as green. When the editor program ini.ally starts, its content is empty. Refer to the
sec.on “Sample Output” for more examples.

2. Row cursor - it’s used to show where the cursor is on the current row if not empty. In other
words, the cursor will appear on printable characters including space. The cursor is shown by
wrapping a character with a pair of escape character strings such as “\033[42m” and “\033[0m”.
For example, given a string “hello world”, to show the green cursor at the posi.on of the le[er
‘e’, this is the string to print: “h” + “\033[42m” + “e” + “\033[0m” + “llo world”.

3. Insert - the given string “Text” will be inserted to the leO of the cursor and the cursor posi.on
will be changed to the beginning of the “Text” string.

4. Append - the given string “Text” will be inserted to the right of the current cursor posi.on and
the cursor posi.on will be changed to the end of the “Text” string.

5. Delete word - delete all characters from the cursor position to the beginning of the next word or
to the end of the line.

6. Cursor leO and right - when reposi.oning the cursor to the leO or right, one or mul.ple
posi.ons, and if the cursor is already at the far leO or far right posi.on, leave the cursor where it
is.

7. Undo - it’s used to reverse the change(s) made to the editor content including the row cursor
posi.ons based on the most recent commands. If mul.ple consecu.ve undo commands are
executed, each will undo one command at a .me in the reverse order that the commands were
originally executed. For example, given the last 2 valid commands are “ahello” followed by “a
world”, the first undo command will reverse the “a world”, and the second consecu.ve undo
command will reverse “ahello”. Refer to the following figure for an illustra.on.

8. Repeat - The “Repeat” command is used to re-execute the last valid command and it offers the
convenience of sparing the user from retyping it again. The “Repeat” command is not
applicable to the Undo and Help commands. For example, consider the command sequence:
“ahello”, “a world”, “?”, and “u”. If the command “r” is subsequently entered mul.ple .mes,
each Repeat command will always re-execute “ahello”. Refer to step “Undo followed by Repeat”
for another illustra.on.

CSC1002 – 2025 Winter By Kinley Lam

CSC1002 – Computa.onal Laboratory

9. Undo followed by Repeat - In this case, the “Undo” is not considered as the last command and
the "Repeat" command is used to target the command immediately preceding the "Undo"
command, not the most recent ac.on performed. Any command entered prior to the "Undo"
will be re-executed upon triggering the "Repeat" command. Refer to the following figure for an
illustra.on.

CSC1002 – 2025 Winter By Kinley Lam

CSC1002 – Computa.onal Laboratory

ASSUMPTIONS
1. The goal of this assignment is to illustrate the benefits of “Problem Decomposi.on”, “Clean

Coding” and “Refactoring”, all together achieving high code readability to ease logic expansion
and keep high maintainability, therefore, it’s not aimed at designing a complex, general-purpose
editor for handling large edi.ng content.

2. It’s assumed that the length of each line is kept within a reasonable length so that each line can
be stored directly using the standard Python ‘str’ type. The number of lines is also kept within a
reasonable number so that all lines can be kept in one standard Python list and the lines can be
efficiently updated using the standard list and str opera.ons such as append, insert, slicing,
cloning, …etc.

3. It is assumed that the user will not input a command that consumes excessive memory and
leads to a buffer overflow (also called memory overflow or overrun) at run.me, such as
inser.ng a very long string like “ihello …………………………. world.” In other words, all test cases
executed against your program will be based on the commands from step 1 (Scope) with a
short“Text” string.

4. Each test case is designed to evaluate the func.onality and correctness of your program, rather
than its speed, performance and memory usage. Each test case consists of mul.ple edi.ng
commands with short “Text”.

5. The text editor is required to handle only regular English characters, thus addi.onal unicode
support, if any, is unnecessary.

CSC1002 – 2025 Winter By Kinley Lam

CSC1002 – Computa.onal Laboratory

STARTUP OPTIONS
Not applicable

SKILLS
In this assignment, you will be trained on the use of the followings:

• Refactoring - logic reuse or simplifica.on based on the exis.ng logic.
• Variable scope: global, local and func.on parameters.
• Coding Styles (naming conven.on, meaningful names, comments, doc_string, …etc)
• Problem Decomposi.on, Clean Code, Top-Down Design
• Func.ons (with parameters and return) for program structure and logic decomposi.on
• Standard objects (strings, numbers & lists)
• Variable Scope

PERMITTED MODULES
Only the following Python module(s) is allowed to be used:

• re (regular expression)

DELIVERABLES
Program source code (A1_School_StudentID.py), where School is SSE, SDS, SME, HSS, FE, LHS, MED and
StudentID is your 9-digit student ID.
For instance, a student from SME with student ID “119010001” will name the Python file as follows:

• A1_SME_119010001.py:

Ensure that your source file is saved in standard, regular UTF-8 encoding format. On the status bar of
Visual Studio Code, you can view the current encoding format as follows:

On an occasion, the encoding scheme is set to UTF-8 with BOM as follows:

CSC1002 – 2025 Winter By Kinley Lam

CSC1002 – Computa.onal Laboratory

The presence of the Byte Order Mark (BOM) could be due to copying from websites, older version of
editor, file conversion from other sources, default encoding se�ng, and so on.

Confirm the encoding scheme is UTF-8 and the file name is correct, then submit the plain program file to
the corresponding assignment folder. A deduc.on of 5% will be penalized if the file is incorrectly named
or in wrong encoding format.

TIPS & HINTS
• Apply problem decomposi.on, Clean Code and Refactoring as illustrated during classes.
• Beware of variable scope as you might keep a few variables as global such as current editor

content, cursor posi.on, undo buffer, and so on.
• Refer to Python website for program styles and naming conven.ons (PEP 8)

CSC1002 – 2025 Winter By Kinley Lam

CSC1002 – Computa.onal Laboratory

SAMPLE OUTPUT

 

CSC1002 – 2025 Winter By Kinley Lam

CSC1002 – Computa.onal Laboratory

CSC1002 – 2025 Winter By Kinley Lam

CSC1002 – Computa.onal Laboratory

MARKING CRITERIA
• Coding Styles – overall program structure including layout, comments, white spaces, naming

conven.on, variables, indenta.on, func.ons with appropriate parameters and return.
• Program Correctness – whether or the program works 100% as per Scope.
• User Interac.on – how informa.ve and accurate informa.on is exchanged between your

program and the player.
• Readability counts – programs that are well structured and easy to follow using func.ons to

break down complex problems into smaller cleaner generalized func.ons are preferred over a
func.on embracing a complex logic with many nested condi.ons and branches! In other words,
a design with a clean architecture and high readability is the predilec.on for the course
objec.ves over efficiency. The logic in each func.on should be kept simple and short, and it
should be designed to perform a single task and be generalized with parameters as needed.

• KISS approach – Keep It Simple and Straigh�orward.
• Balance approach – you are not required to come up with a very op.mized solu.on. However,

take a balance between readability and efficiency with good use of program constructs.

DUE DATE
March 2nd, 2025, 11:59:59PM

ITEMS PERCENTAGE REMARKS

CODING STYLES 30%-40% 0% IF PROGRAM DOESN’T RUN

FUNCTIONALITY 60%-70% REFER TO SCOPE

CSC1002 – 2025 Winter By Kinley Lam

