-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbeutel.py
400 lines (322 loc) · 14.6 KB
/
beutel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
"""Implementation of Beutel's adversarially learned fair representations."""
from collections.abc import Sequence
import json
from pathlib import Path
import random
import sys
from typing import TYPE_CHECKING, Any
from joblib import dump, load
import numpy as np
import pandas as pd
import torch
from torch import Tensor, nn
from torch.autograd import Function
from torch.optim import Adam
from torch.optim.lr_scheduler import ExponentialLR
from torch.utils.data import DataLoader
from ethicml.preprocessing.adjust_labels import LabelBinarizer, assert_binary_labels
from ethicml.preprocessing.splits import train_test_split
from ethicml.utility import DataTuple, FairnessType, SubgroupTuple
from .pytorch_common import CustomDataset, TestDataset, make_dataset_and_loader
from .utils import load_data_from_flags, save_transformations
if TYPE_CHECKING:
from ethicml.models.preprocess.beutel import BeutelArgs
from ethicml.models.preprocess.pre_subprocess import PreAlgoArgs
STRING_TO_ACTIVATION_MAP = {"Sigmoid()": nn.Sigmoid()}
STRING_TO_LOSS_MAP = {"BCELoss()": nn.BCELoss(), "CrossEntropyLoss()": nn.CrossEntropyLoss()}
class Encoder(nn.Module):
"""Encoder of the GAN."""
def __init__(self, enc_size: Sequence[int], init_size: int, activation: nn.Module | None):
super().__init__()
self.encoder = nn.Sequential()
if not enc_size: # In the case that encoder size [] is specified
self.encoder.add_module("single encoder layer", nn.Linear(init_size, init_size))
self.encoder.add_module("single layer encoder activation", activation)
else:
self.encoder.add_module("encoder layer 0", nn.Linear(init_size, enc_size[0]))
self.encoder.add_module("encoder activation 0", activation)
for k in range(len(enc_size) - 1):
self.encoder.add_module(
f"encoder layer {k + 1}", nn.Linear(enc_size[k], enc_size[k + 1])
)
self.encoder.add_module(f"encoder activation {k + 1}", activation)
def forward(self, x: Tensor) -> Tensor:
"""Forward pass."""
return self.encoder(x)
class Adversary(nn.Module):
"""Adversary of the GAN."""
def __init__(
self,
fairness: FairnessType,
adv_size: Sequence[int],
init_size: int,
s_size: int,
activation: nn.Module,
adv_weight: float,
):
super().__init__()
self.fairness = fairness
self.init_size = init_size
self.adv_weight = adv_weight
self.adversary = nn.Sequential()
if not adv_size: # In the case that encoder size [] is specified
self.adversary.add_module("single adversary layer", nn.Linear(init_size, s_size))
self.adversary.add_module("single layer adversary activation", activation)
else:
self.adversary.add_module("adversary layer 0", nn.Linear(init_size, adv_size[0]))
self.adversary.add_module("adversary activation 0", activation)
for k in range(len(adv_size) - 1):
self.adversary.add_module(
f"adversary layer {k + 1}", nn.Linear(adv_size[k], adv_size[k + 1])
)
self.adversary.add_module(f"adversary activation {k + 1}", activation)
self.adversary.add_module("adversary last layer", nn.Linear(adv_size[-1], s_size))
self.adversary.add_module("adversary last activation", activation)
def forward(self, x: Tensor, y: Tensor) -> Tensor:
"""Forward pass."""
x = _grad_reverse(x, lambda_=self.adv_weight)
match self.fairness:
case FairnessType.eq_opp:
mask = y.view(-1, 1).ge(0.5)
x = torch.masked_select(x, mask).view(-1, self.init_size)
x = self.adversary(x)
case FairnessType.eq_odds:
raise NotImplementedError("Not implemented equalized odds yet")
case FairnessType.dp:
x = self.adversary(x)
case _:
raise NotImplementedError("Shouldn't be hit.")
return x
class Predictor(nn.Module):
"""Predictor of the GAN."""
def __init__(
self, pred_size: Sequence[int], init_size: int, class_label_size: int, activation: nn.Module
):
super().__init__()
self.predictor = nn.Sequential()
if not pred_size: # In the case that encoder size [] is specified
self.predictor.add_module(
"single adversary layer", nn.Linear(init_size, class_label_size)
)
self.predictor.add_module("single layer adversary activation", activation)
else:
self.predictor.add_module("adversary layer 0", nn.Linear(init_size, pred_size[0]))
self.predictor.add_module("adversary activation 0", nn.Sigmoid())
for k in range(len(pred_size) - 1):
self.predictor.add_module(
f"adversary layer {k + 1}", nn.Linear(pred_size[k], pred_size[k + 1])
)
self.predictor.add_module(f"adversary activation {k + 1}", nn.Sigmoid())
self.predictor.add_module(
"adversary last layer", nn.Linear(pred_size[-1], class_label_size)
)
self.predictor.add_module("adversary last activation", nn.Softmax())
def forward(self, x: Tensor) -> Tensor:
"""Forward pass."""
return self.predictor(x)
class Model(nn.Module):
"""Whole GAN model."""
def __init__(self, enc: Encoder, adv: Adversary, pred: Predictor) -> None:
super().__init__()
self.enc = enc
self.adv = adv
self.pred = pred
def forward(self, x: Tensor, y: Tensor) -> tuple[Tensor, Tensor, Tensor]:
"""Forward pass."""
encoded = self.enc(x)
s_hat = self.adv(encoded, y)
y_hat = self.pred(encoded)
return encoded, s_hat, y_hat
def set_seed(seed: int) -> None:
"""Set the seeds for numpy torch etc."""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def build_networks(
flags: "BeutelArgs",
train_data: CustomDataset,
enc_activation: nn.Module,
adv_activation: nn.Module,
) -> tuple[Encoder, Model]:
"""Build the networks we use.
Pulled into a separate function to make the code a bit neater.
"""
enc = Encoder(
enc_size=flags["enc_size"], init_size=int(train_data.xdim), activation=enc_activation
)
adv = Adversary(
fairness=FairnessType[flags["fairness"]],
adv_size=flags["adv_size"],
init_size=flags["enc_size"][-1],
s_size=int(train_data.sdim),
activation=adv_activation,
adv_weight=flags["adv_weight"],
)
pred = Predictor(
pred_size=flags["pred_size"],
init_size=flags["enc_size"][-1],
class_label_size=len(np.unique(train_data.y)),
activation=adv_activation,
)
model = Model(enc, adv, pred)
return enc, model
def fit(train: DataTuple, flags: "BeutelArgs", seed: int = 888) -> tuple[DataTuple, Encoder]:
"""Train the fair autoencoder on the training data and then transform both training and test."""
set_seed(seed)
fairness = FairnessType[flags["fairness"]]
processor: LabelBinarizer | None = None
if flags["y_loss"] == "BCELoss()":
try:
assert_binary_labels(train)
except AssertionError:
processor = LabelBinarizer()
train = processor.adjust(train)
# By default we use 10% of the training data for validation
train_, validation = train_test_split(train, train_percentage=1 - flags["validation_pcnt"])
train_data, train_loader = make_dataset_and_loader(
train_, batch_size=flags["batch_size"], shuffle=True, seed=seed, drop_last=True
)
_, validation_loader = make_dataset_and_loader(
validation, batch_size=flags["batch_size"], shuffle=False, seed=seed, drop_last=True
)
_, all_train_data_loader = make_dataset_and_loader(
train, batch_size=flags["batch_size"], shuffle=False, seed=seed, drop_last=True
)
# convert flags to Python objects
enc_activation = STRING_TO_ACTIVATION_MAP[flags["enc_activation"]]
adv_activation = STRING_TO_ACTIVATION_MAP[flags["adv_activation"]]
y_loss_fn = STRING_TO_LOSS_MAP[flags["y_loss"]]
s_loss_fn = STRING_TO_LOSS_MAP[flags["s_loss"]]
enc, model = build_networks(
flags=flags,
train_data=train_data,
enc_activation=enc_activation,
adv_activation=adv_activation,
)
optimizer = torch.optim.Adam(model.parameters())
scheduler = ExponentialLR(optimizer, gamma=0.95)
best_val_loss = torch.ones(1) * np.inf
best_enc = None
for i in range(1, flags["epochs"] + 1):
model.train()
for embedding, sens_label, class_label in train_loader:
sens_label = sens_label.view(-1, 1)
class_label = class_label.view(-1, 1)
_, s_pred, y_pred = model(embedding, class_label)
loss = y_loss_fn(y_pred, class_label.squeeze(-1).long())
match fairness:
case FairnessType.eq_opp:
mask = class_label.ge(0.5)
case FairnessType.eq_odds:
raise NotImplementedError("Not implemented Eq. Odds yet")
case FairnessType.dp:
mask = torch.ones(s_pred.shape, dtype=torch.bool)
case _:
raise NotImplementedError(f"Unknown value: {fairness}")
loss += s_loss_fn(
s_pred, torch.masked_select(sens_label, mask).view(-1, int(train_data.sdim))
)
step(i, loss, optimizer, scheduler)
if i % 5 == 0 or i == flags["epochs"]:
model.eval()
val_y_loss = torch.zeros(1)
val_s_loss = torch.zeros(1)
for embedding, sens_label, class_label in validation_loader:
sens_label = sens_label.view(-1, 1)
class_label = class_label.view(-1, 1)
_, s_pred, y_pred = model(embedding, class_label)
val_y_loss += y_loss_fn(y_pred, class_label.squeeze(-1).long())
mask = get_mask(flags, s_pred, class_label)
val_s_loss -= s_loss_fn(
s_pred, torch.masked_select(sens_label, mask).view(-1, int(train_data.sdim))
)
val_loss = (val_y_loss / len(validation_loader)) + (val_s_loss / len(validation_loader))
if val_loss < best_val_loss:
best_val_loss = val_loss
best_enc = enc.state_dict()
assert best_enc is not None
enc.load_state_dict(best_enc)
transformed_train = encode_dataset(enc, all_train_data_loader, train)
if processor is not None:
transformed_train = processor.post(transformed_train)
return transformed_train, enc
def transform(data: SubgroupTuple, enc: torch.nn.Module, flags: "BeutelArgs") -> SubgroupTuple:
"""Transform the test data using the trained autoencoder."""
test_data = TestDataset(data)
test_loader = DataLoader(dataset=test_data, batch_size=flags["batch_size"], shuffle=False)
return encode_testset(enc, test_loader, data)
def train_and_transform(
train: DataTuple, test: SubgroupTuple, flags: "BeutelArgs", seed: int
) -> tuple[DataTuple, SubgroupTuple]:
"""Train the fair autoencoder on the training data and then transform both training and test."""
transformed_train, enc = fit(train, flags, seed)
transformed_test = transform(test, enc, flags)
return transformed_train, transformed_test
def step(iteration: int, loss: Tensor, optimizer: Adam, scheduler: ExponentialLR) -> None:
"""Do one training step."""
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step(iteration)
def get_mask(flags: "BeutelArgs", s_pred: Tensor, class_label: Tensor) -> Tensor:
"""Get a mask to enforce different fairness types."""
fairness = FairnessType[flags["fairness"]]
match fairness:
case FairnessType.eq_opp:
mask = class_label.ge(0.5)
case FairnessType.eq_odds:
raise NotImplementedError("Not implemented Eq. Odds yet")
case FairnessType.dp:
mask = torch.ones(s_pred.shape, dtype=torch.bool)
case _:
raise NotImplementedError("Shouldn't be hit.")
return mask
def encode_dataset(enc: nn.Module, dataloader: DataLoader, datatuple: DataTuple) -> DataTuple:
"""Encode a dataset."""
data_to_return: list[Any] = []
for embedding, _, _ in dataloader:
data_to_return += enc(embedding).data.numpy().tolist()
return datatuple.replace(x=pd.DataFrame(data_to_return))
def encode_testset(
enc: nn.Module, dataloader: DataLoader, testtuple: SubgroupTuple
) -> SubgroupTuple:
"""Encode a dataset."""
data_to_return: list[Any] = []
for embedding, _ in dataloader:
data_to_return += enc(embedding).data.numpy().tolist()
return testtuple.replace(x=pd.DataFrame(data_to_return))
class GradReverse(Function):
"""Gradient reversal layer."""
@staticmethod
def forward(ctx: Any, x: Tensor, lambda_: float) -> Any: # pyright: ignore
"""Forward pass."""
ctx.lambda_ = lambda_
return x.view_as(x)
@staticmethod
def backward(ctx: Any, grad_output: Tensor) -> Any: # type: ignore[override]
"""Backward pass with Gradient reversed / inverted."""
return grad_output.neg().mul(ctx.lambda_), None
def _grad_reverse(features: Tensor, lambda_: float) -> Tensor:
return GradReverse.apply(features, lambda_) # pyright: ignore
def main() -> None:
"""Load data from feather files, pass it to `train_and_transform` and then save the result."""
pre_algo_args: PreAlgoArgs = json.loads(sys.argv[1])
flags: BeutelArgs = json.loads(sys.argv[2])
if pre_algo_args["mode"] == "run":
train, test = load_data_from_flags(pre_algo_args)
save_transformations(
train_and_transform(train, test, flags, pre_algo_args["seed"]), pre_algo_args
)
elif pre_algo_args["mode"] == "fit":
train = DataTuple.from_file(Path(pre_algo_args["train"]))
transformed_train, enc = fit(train, flags, seed=pre_algo_args["seed"])
transformed_train.save_to_file(Path(pre_algo_args["new_train"]))
dump(enc, Path(pre_algo_args["model"]))
elif pre_algo_args["mode"] == "transform":
model = load(Path(pre_algo_args["model"]))
test = SubgroupTuple.from_file(Path(pre_algo_args["test"]))
transformed_test = transform(test, model, flags)
transformed_test.save_to_file(Path(pre_algo_args["new_test"]))
if __name__ == "__main__":
main()