Skip to content

Finetuning LLM, RAG, Multiagents, Image classification&segmentation, Text&Image answering, Text2Speech, Movie recommendation, Dimensionality reduction, Llamaindex, Autogen, PyTorch, TensorFlow, Keras, fastai, NumPy, Skicit-learn, Transformers, OpenAI, ElevenLabs, ResNet, LSTM, Autoencoder, U-Net, SVM, CNNs, Transformer, LoRA, GraphRAG, K-means, PCA

Notifications You must be signed in to change notification settings

BurnyCoder/practical-ai-projects

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Practical AI Projects

A comprehensive collection of practical AI applications and implementations using various machine learning, deep learning, and natural language processing techniques.

Overview

This repository contains a diverse set of practical AI projects that demonstrate the application of AI in various domains. The projects cover a wide range of techniques including:

  • Retrieval Augmented Generation (RAG)
  • Multi-agent AI systems
  • Language model fine-tuning
  • Computer vision applications
  • Natural language processing
  • Sentiment analysis
  • Recommendation systems
  • Clustering and dimensionality reduction

Project Structure

Retrieval Augmented Generation (RAG)

  • retrieval_augmented_generation_agent_llm_llamaindex_gpt-4o.py: Implements a RAG agent using LlamaIndex and GPT-4o.
  • graph_retrieval_augmented_generation_graph_rag_gpt-4o.py: Graph-based RAG implementation using GPT-4o.
  • retrieval_augmented_generation_query_engine_llamaindex_rag_llm.py: Query engine for RAG using LlamaIndex.

Multi-Agent Systems

Located in the multi-agent_coding_stock-analysis_customer-onboarding_chess_writing_conversation_autogen directory:

  • Multi-Agent_Coding_and_Financial_Analysis_AutoGen.ipynb: Demonstrates collaborative AI agents for coding and financial analysis.
  • Multi-Agent_Conversation_and_Stand-up_Comedy_AutoGen.ipynb: AI agents generating conversational content and comedy.
  • Multi-Agent_Planning_and_Stock_Report_Generation_AutoGen.ipynb: Agents that plan and generate stock reports.
  • Multi-Agent_Reflection_and_Blogpost_Writing_AutoGen.ipynb: Collaborative writing and reflection through AI agents.
  • Multi-Agent_Sequential_Chats_and_Customer_Onboarding_AutoGen.ipynb: Customer onboarding flows using multiple agents.
  • Multi-Agent_Tool_Use_and_Conversational_Chess_AutoGen.ipynb: Tool use and chess game analysis by AI agents.
  • Multi-Agent_Tool_Use_Fake_Nvidia_Stocks.py: Demonstration of tool use for stock analysis.

Language Model Fine-tuning

  • language_model_finetuning_qlora_llama2.ipynb: Fine-tuning Llama 2 using QLoRA technique.
  • finetuning_img_classifier_visual_transformer_lora.ipynb: Fine-tuning a visual transformer model using LoRA.

Computer Vision

  • natural-scene-classification_cnns.ipynb: Classification of natural scenes using CNNs.
  • image-classifier_resnet18.ipynb: Image classification using ResNet18.
  • image-classifier_resnet34.py: Image classification using ResNet34.
  • segmentation_resnet34.py: Image segmentation using ResNet34.
  • noise_removal_autoencoder.py: Noise removal using autoencoders.
  • image_question_answering_openai.py: Visual question answering using OpenAI's GPT-4o.
  • text-to-image_clipdrop.py: Text-to-image generation using ClipDrop.

Natural Language Processing

  • NLP_classification_search_text-edit_sentiment_analysis_Bert_BoW_SVM_embeddings_skip-gram_regex_POS.ipynb: Comprehensive NLP techniques.
  • sentiment-analysis_vader_roberta.ipynb: Sentiment analysis using VADER and RoBERTa.
  • sentiment_analysis_AWD-LSTM_enocder.py: Sentiment analysis using AWD-LSTM encoder.
  • question_answering_openai.py: Question answering using OpenAI models.
  • text-to-speech_elevenlabs.py: Text-to-speech conversion using ElevenLabs.

Machine Learning

  • clustering_kmeans.ipynb: K-means clustering implementation.
  • dimensionality_reduction_pca.ipynb: Principal Component Analysis (PCA) for dimensionality reduction.
  • tabular_prediction_nn.py: Neural network for tabular data prediction.
  • digit-classifier_nn.py: Neural network for digit classification.
  • recommender_system_movies_nn.py: Movie recommendation system using neural networks.

Getting Started

Prerequisites

  • Python 3.8+
  • Required packages depending on the specific project (see individual files)
  • API keys for various services (OpenAI, ElevenLabs, etc.)

Installation

  1. Clone this repository:

    git clone https://github.com/yourusername/practical-ai-projects.git
    cd practical-ai-projects
  2. Create a virtual environment:

    python -m venv venv
    source venv/bin/activate  # On Windows: venv\Scripts\activate
  3. Install dependencies for the specific project you want to run.

Usage

Each file or notebook contains example usage. For Python scripts, you can run them directly:

python retrieval_augmented_generation_agent_llm_llamaindex_gpt-4o.py

For Jupyter notebooks, open them in Jupyter Lab or Notebook:

jupyter lab

API Key Setup

Many of these projects require API keys. Create a .env file in the root directory with the following content:

OPENAI_API_KEY=your_openai_api_key
ELEVENLABS_API_KEY=your_elevenlabs_api_key
# Add any other API keys required

License

[MIT License]

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

Acknowledgments

  • OpenAI for GPT models
  • LlamaIndex for RAG implementations
  • AutoGen for multi-agent systems
  • Various other open-source libraries and frameworks used in the projects

About

Finetuning LLM, RAG, Multiagents, Image classification&segmentation, Text&Image answering, Text2Speech, Movie recommendation, Dimensionality reduction, Llamaindex, Autogen, PyTorch, TensorFlow, Keras, fastai, NumPy, Skicit-learn, Transformers, OpenAI, ElevenLabs, ResNet, LSTM, Autoencoder, U-Net, SVM, CNNs, Transformer, LoRA, GraphRAG, K-means, PCA

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published