A comprehensive collection of practical AI applications and implementations using various machine learning, deep learning, and natural language processing techniques.
This repository contains a diverse set of practical AI projects that demonstrate the application of AI in various domains. The projects cover a wide range of techniques including:
- Retrieval Augmented Generation (RAG)
- Multi-agent AI systems
- Language model fine-tuning
- Computer vision applications
- Natural language processing
- Sentiment analysis
- Recommendation systems
- Clustering and dimensionality reduction
retrieval_augmented_generation_agent_llm_llamaindex_gpt-4o.py
: Implements a RAG agent using LlamaIndex and GPT-4o.graph_retrieval_augmented_generation_graph_rag_gpt-4o.py
: Graph-based RAG implementation using GPT-4o.retrieval_augmented_generation_query_engine_llamaindex_rag_llm.py
: Query engine for RAG using LlamaIndex.
Located in the multi-agent_coding_stock-analysis_customer-onboarding_chess_writing_conversation_autogen
directory:
Multi-Agent_Coding_and_Financial_Analysis_AutoGen.ipynb
: Demonstrates collaborative AI agents for coding and financial analysis.Multi-Agent_Conversation_and_Stand-up_Comedy_AutoGen.ipynb
: AI agents generating conversational content and comedy.Multi-Agent_Planning_and_Stock_Report_Generation_AutoGen.ipynb
: Agents that plan and generate stock reports.Multi-Agent_Reflection_and_Blogpost_Writing_AutoGen.ipynb
: Collaborative writing and reflection through AI agents.Multi-Agent_Sequential_Chats_and_Customer_Onboarding_AutoGen.ipynb
: Customer onboarding flows using multiple agents.Multi-Agent_Tool_Use_and_Conversational_Chess_AutoGen.ipynb
: Tool use and chess game analysis by AI agents.Multi-Agent_Tool_Use_Fake_Nvidia_Stocks.py
: Demonstration of tool use for stock analysis.
language_model_finetuning_qlora_llama2.ipynb
: Fine-tuning Llama 2 using QLoRA technique.finetuning_img_classifier_visual_transformer_lora.ipynb
: Fine-tuning a visual transformer model using LoRA.
natural-scene-classification_cnns.ipynb
: Classification of natural scenes using CNNs.image-classifier_resnet18.ipynb
: Image classification using ResNet18.image-classifier_resnet34.py
: Image classification using ResNet34.segmentation_resnet34.py
: Image segmentation using ResNet34.noise_removal_autoencoder.py
: Noise removal using autoencoders.image_question_answering_openai.py
: Visual question answering using OpenAI's GPT-4o.text-to-image_clipdrop.py
: Text-to-image generation using ClipDrop.
NLP_classification_search_text-edit_sentiment_analysis_Bert_BoW_SVM_embeddings_skip-gram_regex_POS.ipynb
: Comprehensive NLP techniques.sentiment-analysis_vader_roberta.ipynb
: Sentiment analysis using VADER and RoBERTa.sentiment_analysis_AWD-LSTM_enocder.py
: Sentiment analysis using AWD-LSTM encoder.question_answering_openai.py
: Question answering using OpenAI models.text-to-speech_elevenlabs.py
: Text-to-speech conversion using ElevenLabs.
clustering_kmeans.ipynb
: K-means clustering implementation.dimensionality_reduction_pca.ipynb
: Principal Component Analysis (PCA) for dimensionality reduction.tabular_prediction_nn.py
: Neural network for tabular data prediction.digit-classifier_nn.py
: Neural network for digit classification.recommender_system_movies_nn.py
: Movie recommendation system using neural networks.
- Python 3.8+
- Required packages depending on the specific project (see individual files)
- API keys for various services (OpenAI, ElevenLabs, etc.)
-
Clone this repository:
git clone https://github.com/yourusername/practical-ai-projects.git cd practical-ai-projects
-
Create a virtual environment:
python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate
-
Install dependencies for the specific project you want to run.
Each file or notebook contains example usage. For Python scripts, you can run them directly:
python retrieval_augmented_generation_agent_llm_llamaindex_gpt-4o.py
For Jupyter notebooks, open them in Jupyter Lab or Notebook:
jupyter lab
Many of these projects require API keys. Create a .env
file in the root directory with the following content:
OPENAI_API_KEY=your_openai_api_key
ELEVENLABS_API_KEY=your_elevenlabs_api_key
# Add any other API keys required
[MIT License]
Contributions are welcome! Please feel free to submit a Pull Request.
- OpenAI for GPT models
- LlamaIndex for RAG implementations
- AutoGen for multi-agent systems
- Various other open-source libraries and frameworks used in the projects