Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix scalar indexing of ProjectTo for wrappers of GPU arrays #630

Open
wants to merge 8 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 12 additions & 1 deletion Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -6,21 +6,32 @@ version = "1.16.0"
Compat = "34da2185-b29b-5c13-b0c7-acf172513d20"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
GPUArraysCore = "46192b85-c4d5-4398-a991-12ede77f4527"

[compat]
BenchmarkTools = "0.5"
Compat = "2, 3, 4"
FiniteDifferences = "0.10"
OffsetArrays = "1"
StaticArrays = "0.11, 0.12, 1"
GPUArraysCore = "0.1"
JLArrays = "0.1"
julia = "1.6"

[extras]
BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf"
FiniteDifferences = "26cc04aa-876d-5657-8c51-4c34ba976000"
OffsetArrays = "6fe1bfb0-de20-5000-8ca7-80f57d26f881"
StaticArrays = "90137ffa-7385-5640-81b9-e52037218182"
JLArrays = "27aeb0d3-9eb9-45fb-866b-73c2ecf80fcb"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"

[targets]
test = ["Test", "BenchmarkTools", "FiniteDifferences", "OffsetArrays", "StaticArrays"]
test = [
"Test",
"BenchmarkTools",
"FiniteDifferences",
"OffsetArrays",
"StaticArrays",
"JLArrays",
]
1 change: 1 addition & 0 deletions src/ChainRulesCore.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@ using Base.Broadcast: broadcasted, Broadcasted, broadcastable, materialize, mate
using Base.Meta
using LinearAlgebra
using SparseArrays: SparseVector, SparseMatrixCSC
using GPUArraysCore
using Compat: hasfield, hasproperty

export frule, rrule # core function
Expand Down
52 changes: 50 additions & 2 deletions src/projection.jl
Original file line number Diff line number Diff line change
Expand Up @@ -227,7 +227,13 @@ function (project::ProjectTo{AbstractArray})(dx::AbstractArray{S,M}) where {S,M}
throw(_projection_mismatch(project.axes, size(dx)))
end
end
reshape(dx, project.axes)
# Reshape, copying to remove the wrapper if a GPUArray, see
# https://github.com/JuliaDiff/ChainRulesCore.jl/issues/624
if dx isa AbstractGPUArray
copy(reshape(dx, project.axes))
else
reshape(dx, project.axes)
end
end
# Then deal with the elements. One projector if AbstractArray{<:Number},
# or one per element for arrays of anything else, including arrays of arrays:
Expand Down Expand Up @@ -385,7 +391,6 @@ function (project::ProjectTo{<:Tangent{<:Tuple}})(dx::AbstractArray)
end
end


#####
##### `LinearAlgebra`
#####
Expand Down Expand Up @@ -613,3 +618,46 @@ function (project::ProjectTo{SparseMatrixCSC})(dx::SparseMatrixCSC)
invoke(project, Tuple{AbstractArray}, dx)
end
end

#####
##### `GPUArrays`
#####

# https://github.com/JuliaDiff/ChainRulesCore.jl/issues/624

# Row vectors aren't acceptable as gradients for 1-row matrices:
# Nested GPUArray wrappers lead to scalar indexing, try to prevent that:
function (project::ProjectTo{AbstractArray})(
dx::Transpose{T,A}
) where {T,A<:AbstractGPUVector}
return project(copy(reshape(vec(dx), 1, :)))
end
function (project::ProjectTo{AbstractArray})(
dx::Adjoint{T,A}
) where {T,A<:AbstractGPUVector}
return project(copy(reshape(conj(adjoint(dx)), 1, :)))
end

# Make sure wrappers either cancel out or are materialized to maintain a maximum
# wrapper depth of 1:
AdjOrTransAbsGPUVec = Union{Adjoint{T,A},Transpose{T,A}} where {T,A<:AbstractGPUVector}
function (project::ProjectTo{Adjoint})(dx::AdjOrTransAbsGPUVec)
return adjoint(project.parent(conj(transpose(dx))))
end
function (project::ProjectTo{Adjoint})(dx::AbstractGPUArray)
if size(dx, 1) != 1 || size(dx, 2) != length(project.parent.axes[1])
throw(_projection_mismatch((1:1, project.parent.axes...), size(dx)))
end
dy = eltype(dx) <: Real ? copy(vec(dx)) : copy(adjoint(dx))
return adjoint(project.parent(dy))
end
function (project::ProjectTo{Transpose})(dx::AdjOrTransAbsGPUVec)
return transpose(project.parent(conj(adjoint(dx))))
end
function (project::ProjectTo{Transpose})(dx::AbstractGPUArray)
if size(dx, 1) != 1 || size(dx, 2) != length(project.parent.axes[1])
throw(_projection_mismatch((1:1, project.parent.axes...), size(dx)))
end
dy = eltype(dx) <: Number ? copy(vec(dx)) : copy(transpose(dx))
return transpose(project.parent(dy))
end
109 changes: 88 additions & 21 deletions test/projection.jl
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
using ChainRulesCore, Test
using LinearAlgebra, SparseArrays
using OffsetArrays, StaticArrays, BenchmarkTools
using JLArrays

# Like ForwardDiff.jl's Dual
struct Dual{T<:Real} <: Real
Expand Down Expand Up @@ -50,7 +51,7 @@ struct NoSuperType end
# real & complex
@test ProjectTo(1.0 + 1im)(Dual(1.0, 2.0)) isa Complex{<:Dual}
@test ProjectTo(1.0 + 1im)(Complex(Dual(1.0, 2.0), Dual(1.0, 2.0))) isa
Complex{<:Dual}
Complex{<:Dual}
@test ProjectTo(1.0)(Complex(Dual(1.0, 2.0), Dual(1.0, 2.0))) isa Dual

# Tangent
Expand Down Expand Up @@ -143,7 +144,7 @@ struct NoSuperType end

@test ProjectTo(Ref(true)) isa ProjectTo{NoTangent}
@test ProjectTo(Ref([false]')) isa ProjectTo{NoTangent}

@test ProjectTo(Ref(1.0))(Ref(NoTangent())) === NoTangent() # collapse all-zero
end

Expand All @@ -154,7 +155,7 @@ struct NoSuperType end
@test @inferred(pt1(pt1((1,)))) == pt1(pt1((1,))) # accepts correct Tangent
@test @inferred(pt1(Tangent{Any}(1))) == pt1((1,)) # accepts Tangent{Any}
end
@test pt1([1,]) == Tangent{Tuple{Float64}}(1.0,) # accepts Vector
@test pt1([1]) == Tangent{Tuple{Float64}}(1.0) # accepts Vector
@test @inferred(pt1(NoTangent())) === NoTangent()
@test @inferred(pt1(ZeroTangent())) === ZeroTangent()
@test @inferred(pt1((NoTangent(),))) === NoTangent() # collapse all-zero
Expand All @@ -163,7 +164,9 @@ struct NoSuperType end
@test_throws Exception pt1([])

pt3 = ProjectTo(([1, 2, 3], false, :gamma)) # partly non-differentiable
@test pt3((1:3, 4, 5)) == Tangent{Tuple{Vector{Int}, Bool, Symbol}}([1.0, 2.0, 3.0], NoTangent(), NoTangent())
@test pt3((1:3, 4, 5)) == Tangent{Tuple{Vector{Int},Bool,Symbol}}(
[1.0, 2.0, 3.0], NoTangent(), NoTangent()
)
@test ProjectTo((true, [false])) isa ProjectTo{NoTangent}
end

Expand Down Expand Up @@ -216,7 +219,7 @@ struct NoSuperType end
@testset "UniformScaling" begin
@test ProjectTo(I)(123) === NoTangent()
@test ProjectTo(2 * I)(I * 3im) === 0.0 * I
@test ProjectTo((4 + 5im) * I)(Tangent{typeof(im * I)}(; λ = 6)) === (6.0 + 0.0im) * I
@test ProjectTo((4 + 5im) * I)(Tangent{typeof(im * I)}(; λ=6)) === (6.0 + 0.0im) * I
@test ProjectTo(7 * I)(Tangent{typeof(2I)}()) == ZeroTangent()
end

Expand Down Expand Up @@ -375,29 +378,93 @@ struct NoSuperType end
pvec3 = ProjectTo([1, 2, 3])
@test axes(pvec3(OffsetArray(rand(3), 0:2))) == (1:3,)
@test pvec3(OffsetArray(rand(3), 0:2)) isa Vector # relies on axes === axes test
@test pvec3(OffsetArray(rand(3,1), 0:2, 0:0)) isa Vector
@test pvec3(OffsetArray(rand(3, 1), 0:2, 0:0)) isa Vector
end

#####
##### `StaticArrays`
#####

@testset "StaticArrays" begin
# There is no code for this, but when argument isa StaticArray, axes(x) === axes(dx)
# implies a check, and reshape will wrap a Vector into a static SizedVector:
pstat = ProjectTo(SA[1, 2, 3])
@test axes(pstat(rand(3))) === (SOneTo(3),)

# This recurses into structured arrays:
pst = ProjectTo(transpose(SA[1, 2, 3]))
@test axes(pst(rand(1,3))) === (SOneTo(1), SOneTo(3))
@test pst(rand(1,3)) isa Transpose

# When the argument is an ordinary Array, static gradients are allowed to pass,
# like FillArrays. Collecting to an Array would cost a copy.
pvec3 = ProjectTo([1, 2, 3])
@test pvec3(SA[1, 2, 3]) isa StaticArray
@testset "StaticArrays" begin
# There is no code for this, but when argument isa StaticArray, axes(x) === axes(dx)
# implies a check, and reshape will wrap a Vector into a static SizedVector:
pstat = ProjectTo(SA[1, 2, 3])
@test axes(pstat(rand(3))) === (SOneTo(3),)

# This recurses into structured arrays:
pst = ProjectTo(transpose(SA[1, 2, 3]))
@test axes(pst(rand(1, 3))) === (SOneTo(1), SOneTo(3))
@test pst(rand(1, 3)) isa Transpose

# When the argument is an ordinary Array, static gradients are allowed to pass,
# like FillArrays. Collecting to an Array would cost a copy.
pvec3 = ProjectTo([1, 2, 3])
@test pvec3(SA[1, 2, 3]) isa StaticArray
end

#####
##### `GPU arrays`
#####

# issue #624
@testset "GPUArrays" begin
JLVector = JLArray{T,1} where {T}
JLMatrix = JLArray{T,2} where {T}

pvec3 = ProjectTo(JLArray([1, 2, 3]))
@test pvec3(JLArray(1.0:3.0)) == JLArray(1.0:3.0)
@test pvec3(JLArray(1:3)) == JLArray(1.0:3.0) # would prefer ===, map(Float64, dx) would do that, not important
@test pvec3(JLArray([1, 2, 3 + 4im])) == JLArray(1:3)
@test eltype(pvec3(JLArray([1, 2, 3.0f0]))) === Float64

# reshape
@test pvec3(reshape(JLArray([1, 2, 3]), 3, 1)) isa JLVector
@test_throws DimensionMismatch pvec3(reshape(JLArray([1, 2, 3]), 1, 3))
@test_throws DimensionMismatch pvec3(JLArray([1, 2, 3, 4]))

pmat = ProjectTo(JLArray(rand(2, 2) .+ im))
@test pmat(JLArray([1 2; 3 4.0+5im])') isa Adjoint # pass-through
@test pmat(JLArray([1 2; 3 4])') isa JLMatrix # broadcast type change

pmat2 = ProjectTo(JLArray(rand(2, 2))')
@test pmat2(JLArray([1 2; 3 4.0+5im])) isa JLMatrix # adjoint matrices are not re-created

prow = ProjectTo(JLArray([1im 2 3im]))
@test prow(transpose(JLArray([1, 2, 3 + 4.0im]))) == JLArray([1 2 3 + 4im])
@test prow(transpose(JLArray([1, 2, 3 + 4.0im]))) isa JLMatrix # row vectors may not pass through
@test prow(adjoint(JLArray([1, 2, 3 + 5im]))) == JLArray([1 2 3 - 5im])
@test prow(adjoint(JLArray([1, 2, 3]))) isa JLMatrix

# some bugs
@test pvec3(JLArray(fill(NoTangent(), 3))) === NoTangent() #410, was an array of such
@test ProjectTo(JLArray([pi]))(JLArray([1])) isa JLVector{Int} #423, was Irrational -> Bool -> NoTangent

# adjoint vectors
@testset "GPUArrays: $adj vectors" for adj in [transpose, adjoint]
padj = ProjectTo(adj(JLArray([1, 2, 3])))
adjT = typeof(adj(JLArray([1, 2, 3.0])))
@test padj(transpose(JLArray(1:3))) isa adjT
@test padj(JLArray([4 5 6 + 7im])) isa adjT
@test padj(JLArray([4.0 5.0 6.0])) isa adjT

@test_throws DimensionMismatch padj(JLArray([1, 2, 3]))
@test_throws DimensionMismatch padj(JLArray([1 2 3]'))
@test_throws DimensionMismatch padj(JLArray([1 2 3 4]))

padj_complex = ProjectTo(adj(JLArray([1, 2, 3 + 4im])))
@test padj_complex(JLArray([4 5 6 + 7im])) == JLArray([4 5 6 + 7im])
@test padj_complex(transpose(JLArray([4, 5, 6 + 7im]))) ==
JLArray([4 5 6 + 7im])
@test padj_complex(adjoint(JLArray([4, 5, 6 + 7im]))) == JLArray([4 5 6 - 7im])

# issue #410
@test padj(JLArray([NoTangent() NoTangent() NoTangent()])) === NoTangent()

@test ProjectTo(adj(JLArray([true, false])))(JLArray([1 2])) isa AbstractZero
@test ProjectTo(adj([JLArray([true]), JLArray([false])])) isa
ProjectTo{<:AbstractZero}
end
end

#####
##### `ChainRulesCore`
Expand Down