Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

metal : support MTLGPUFamily < Apple7, formatting, style #3524

Merged
merged 5 commits into from
Oct 8, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
202 changes: 123 additions & 79 deletions ggml-metal.m
Original file line number Diff line number Diff line change
Expand Up @@ -81,18 +81,18 @@
GGML_METAL_DECL_KERNEL(get_rows_q6_K);
GGML_METAL_DECL_KERNEL(rms_norm);
GGML_METAL_DECL_KERNEL(norm);
GGML_METAL_DECL_KERNEL(mul_mat_f32_f32);
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32);
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32_1row);
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32_l4);
GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q8_0_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q2_K_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q3_K_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q4_K_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q5_K_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q6_K_f32);
GGML_METAL_DECL_KERNEL(mul_mv_f32_f32);
GGML_METAL_DECL_KERNEL(mul_mv_f16_f32);
GGML_METAL_DECL_KERNEL(mul_mv_f16_f32_1row);
GGML_METAL_DECL_KERNEL(mul_mv_f16_f32_l4);
GGML_METAL_DECL_KERNEL(mul_mv_q4_0_f32);
GGML_METAL_DECL_KERNEL(mul_mv_q4_1_f32);
GGML_METAL_DECL_KERNEL(mul_mv_q8_0_f32);
GGML_METAL_DECL_KERNEL(mul_mv_q2_K_f32);
GGML_METAL_DECL_KERNEL(mul_mv_q3_K_f32);
GGML_METAL_DECL_KERNEL(mul_mv_q4_K_f32);
GGML_METAL_DECL_KERNEL(mul_mv_q5_K_f32);
GGML_METAL_DECL_KERNEL(mul_mv_q6_K_f32);
GGML_METAL_DECL_KERNEL(mul_mm_f32_f32);
GGML_METAL_DECL_KERNEL(mul_mm_f16_f32);
GGML_METAL_DECL_KERNEL(mul_mm_q4_0_f32);
Expand Down Expand Up @@ -262,28 +262,30 @@ static void ggml_metal_log(enum ggml_log_level level, const char* format, ...){
GGML_METAL_ADD_KERNEL(get_rows_q6_K);
GGML_METAL_ADD_KERNEL(rms_norm);
GGML_METAL_ADD_KERNEL(norm);
GGML_METAL_ADD_KERNEL(mul_mat_f32_f32);
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32);
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32_1row);
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32_l4);
GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q8_0_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q2_K_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q3_K_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q4_K_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q5_K_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q6_K_f32);
GGML_METAL_ADD_KERNEL(mul_mm_f32_f32);
GGML_METAL_ADD_KERNEL(mul_mm_f16_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q4_0_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q8_0_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q4_1_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q2_K_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q3_K_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q4_K_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q5_K_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q6_K_f32);
GGML_METAL_ADD_KERNEL(mul_mv_f32_f32);
GGML_METAL_ADD_KERNEL(mul_mv_f16_f32);
GGML_METAL_ADD_KERNEL(mul_mv_f16_f32_1row);
GGML_METAL_ADD_KERNEL(mul_mv_f16_f32_l4);
GGML_METAL_ADD_KERNEL(mul_mv_q4_0_f32);
GGML_METAL_ADD_KERNEL(mul_mv_q4_1_f32);
GGML_METAL_ADD_KERNEL(mul_mv_q8_0_f32);
GGML_METAL_ADD_KERNEL(mul_mv_q2_K_f32);
GGML_METAL_ADD_KERNEL(mul_mv_q3_K_f32);
GGML_METAL_ADD_KERNEL(mul_mv_q4_K_f32);
GGML_METAL_ADD_KERNEL(mul_mv_q5_K_f32);
GGML_METAL_ADD_KERNEL(mul_mv_q6_K_f32);
if ([ctx->device supportsFamily:MTLGPUFamilyApple7]) {
GGML_METAL_ADD_KERNEL(mul_mm_f32_f32);
GGML_METAL_ADD_KERNEL(mul_mm_f16_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q4_0_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q8_0_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q4_1_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q2_K_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q3_K_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q4_K_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q5_K_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q6_K_f32);
}
GGML_METAL_ADD_KERNEL(rope_f32);
GGML_METAL_ADD_KERNEL(rope_f16);
GGML_METAL_ADD_KERNEL(alibi_f32);
Expand All @@ -296,8 +298,22 @@ static void ggml_metal_log(enum ggml_log_level level, const char* format, ...){
#undef GGML_METAL_ADD_KERNEL
}

GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
#if TARGET_OS_OSX
// print MTL GPU family:
GGML_METAL_LOG_INFO("%s: GPU name: %s\n", __func__, [[ctx->device name] UTF8String]);
GGML_METAL_LOG_INFO("%s: GPU arch: %s\n", __func__, [[ctx->device architecture].name UTF8String]);

// determine max supported GPU family
// https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
// https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
for (int i = MTLGPUFamilyApple9 + 10; i >= MTLGPUFamilyApple1; --i) {
if ([ctx->device supportsFamily:i]) {
GGML_METAL_LOG_INFO("%s: GPU family: MTLGPUFamilyApple%d (%d)\n", __func__, i - MTLGPUFamilyApple1 + 1, i);
break;
}
}

GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
if (ctx->device.maxTransferRate != 0) {
GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
Expand Down Expand Up @@ -339,28 +355,30 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
GGML_METAL_DEL_KERNEL(get_rows_q6_K);
GGML_METAL_DEL_KERNEL(rms_norm);
GGML_METAL_DEL_KERNEL(norm);
GGML_METAL_DEL_KERNEL(mul_mat_f32_f32);
GGML_METAL_DEL_KERNEL(mul_mat_f16_f32);
GGML_METAL_DEL_KERNEL(mul_mat_f16_f32_1row);
GGML_METAL_DEL_KERNEL(mul_mat_f16_f32_l4);
GGML_METAL_DEL_KERNEL(mul_mat_q4_0_f32);
GGML_METAL_DEL_KERNEL(mul_mat_q4_1_f32);
GGML_METAL_DEL_KERNEL(mul_mat_q8_0_f32);
GGML_METAL_DEL_KERNEL(mul_mat_q2_K_f32);
GGML_METAL_DEL_KERNEL(mul_mat_q3_K_f32);
GGML_METAL_DEL_KERNEL(mul_mat_q4_K_f32);
GGML_METAL_DEL_KERNEL(mul_mat_q5_K_f32);
GGML_METAL_DEL_KERNEL(mul_mat_q6_K_f32);
GGML_METAL_DEL_KERNEL(mul_mm_f32_f32);
GGML_METAL_DEL_KERNEL(mul_mm_f16_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q4_0_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q8_0_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q4_1_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q2_K_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q3_K_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q4_K_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q5_K_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q6_K_f32);
GGML_METAL_DEL_KERNEL(mul_mv_f32_f32);
GGML_METAL_DEL_KERNEL(mul_mv_f16_f32);
GGML_METAL_DEL_KERNEL(mul_mv_f16_f32_1row);
GGML_METAL_DEL_KERNEL(mul_mv_f16_f32_l4);
GGML_METAL_DEL_KERNEL(mul_mv_q4_0_f32);
GGML_METAL_DEL_KERNEL(mul_mv_q4_1_f32);
GGML_METAL_DEL_KERNEL(mul_mv_q8_0_f32);
GGML_METAL_DEL_KERNEL(mul_mv_q2_K_f32);
GGML_METAL_DEL_KERNEL(mul_mv_q3_K_f32);
GGML_METAL_DEL_KERNEL(mul_mv_q4_K_f32);
GGML_METAL_DEL_KERNEL(mul_mv_q5_K_f32);
GGML_METAL_DEL_KERNEL(mul_mv_q6_K_f32);
if ([ctx->device supportsFamily:MTLGPUFamilyApple7]) {
GGML_METAL_DEL_KERNEL(mul_mm_f32_f32);
GGML_METAL_DEL_KERNEL(mul_mm_f16_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q4_0_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q8_0_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q4_1_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q2_K_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q3_K_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q4_K_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q5_K_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q6_K_f32);
}
GGML_METAL_DEL_KERNEL(rope_f32);
GGML_METAL_DEL_KERNEL(rope_f16);
GGML_METAL_DEL_KERNEL(alibi_f32);
Expand Down Expand Up @@ -986,21 +1004,46 @@ void ggml_metal_graph_compute(
} break;
case GGML_OP_MUL_MAT:
{
// TODO: needs to be updated after PR: https://github.com/ggerganov/ggml/pull/224

GGML_ASSERT(ne00 == ne10);
// GGML_ASSERT(ne02 == ne12); // Should be checked on individual data types until broadcast is implemented everywhere
uint gqa = ne12/ne02;
GGML_ASSERT(ne03 == ne13);

const uint gqa = ne12/ne02;

// find the break-even point where the matrix-matrix kernel becomes more efficient compared
// to the matrix-vector kernel
int ne11_mm_min = 1;

#if 0
// the numbers below are measured on M2 Ultra for 7B and 13B models
// these numbers do not translate to other devices or model sizes
// TODO: need to find a better approach
if ([ctx->device.name isEqualToString:@"Apple M2 Ultra"]) {
switch (src0t) {
case GGML_TYPE_F16: ne11_mm_min = 2; break;
case GGML_TYPE_Q8_0: ne11_mm_min = 7; break;
case GGML_TYPE_Q2_K: ne11_mm_min = 15; break;
case GGML_TYPE_Q3_K: ne11_mm_min = 7; break;
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1: ne11_mm_min = 15; break;
case GGML_TYPE_Q4_K: ne11_mm_min = 11; break;
case GGML_TYPE_Q5_0: // not tested yet
case GGML_TYPE_Q5_1: ne11_mm_min = 13; break; // not tested yet
case GGML_TYPE_Q5_K: ne11_mm_min = 7; break;
case GGML_TYPE_Q6_K: ne11_mm_min = 7; break;
default: ne11_mm_min = 1; break;
}
}
#endif

// for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
// AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
if (!ggml_is_transposed(src0) &&
if ([ctx->device supportsFamily:MTLGPUFamilyApple7] &&
!ggml_is_transposed(src0) &&
!ggml_is_transposed(src1) &&
src1t == GGML_TYPE_F32 &&
[ctx->device supportsFamily:MTLGPUFamilyApple7] &&
ne00%32 == 0 &&
ne11 > 2) {
ne00 % 32 == 0 &&
ne11 > ne11_mm_min) {
//printf("matrix: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12);
switch (src0->type) {
case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f32_f32]; break;
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f16_f32]; break;
Expand Down Expand Up @@ -1029,30 +1072,31 @@ void ggml_metal_graph_compute(
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:12];
[encoder setBytes:&gqa length:sizeof(gqa) atIndex:13];
[encoder setThreadgroupMemoryLength:8192 atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake( (ne11+31)/32, (ne01+63) / 64, ne12) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
[encoder dispatchThreadgroups:MTLSizeMake( (ne11 + 31)/32, (ne01 + 63)/64, ne12) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
} else {
int nth0 = 32;
int nth1 = 1;
int nrows = 1;
//printf("vector: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12);

// use custom matrix x vector kernel
switch (src0t) {
case GGML_TYPE_F32:
{
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f32_f32];
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f32_f32];
nrows = 4;
} break;
case GGML_TYPE_F16:
{
nth0 = 32;
nth1 = 1;
if (ne11 * ne12 < 4) {
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32_1row];
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32_1row];
} else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32_l4];
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32_l4];
nrows = ne11;
} else {
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32];
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32];
nrows = 4;
}
} break;
Expand All @@ -1063,7 +1107,7 @@ void ggml_metal_graph_compute(

nth0 = 8;
nth1 = 8;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_0_f32];
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q4_0_f32];
} break;
case GGML_TYPE_Q4_1:
{
Expand All @@ -1072,7 +1116,7 @@ void ggml_metal_graph_compute(

nth0 = 8;
nth1 = 8;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_1_f32];
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q4_1_f32];
} break;
case GGML_TYPE_Q8_0:
{
Expand All @@ -1081,7 +1125,7 @@ void ggml_metal_graph_compute(

nth0 = 8;
nth1 = 8;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q8_0_f32];
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q8_0_f32];
} break;
case GGML_TYPE_Q2_K:
{
Expand All @@ -1090,7 +1134,7 @@ void ggml_metal_graph_compute(

nth0 = 2;
nth1 = 32;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q2_K_f32];
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q2_K_f32];
} break;
case GGML_TYPE_Q3_K:
{
Expand All @@ -1099,7 +1143,7 @@ void ggml_metal_graph_compute(

nth0 = 2;
nth1 = 32;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q3_K_f32];
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q3_K_f32];
} break;
case GGML_TYPE_Q4_K:
{
Expand All @@ -1108,7 +1152,7 @@ void ggml_metal_graph_compute(

nth0 = 4; //1;
nth1 = 8; //32;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_K_f32];
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q4_K_f32];
} break;
case GGML_TYPE_Q5_K:
{
Expand All @@ -1117,7 +1161,7 @@ void ggml_metal_graph_compute(

nth0 = 2;
nth1 = 32;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q5_K_f32];
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q5_K_f32];
} break;
case GGML_TYPE_Q6_K:
{
Expand All @@ -1126,7 +1170,7 @@ void ggml_metal_graph_compute(

nth0 = 2;
nth1 = 32;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q6_K_f32];
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q6_K_f32];
} break;
default:
{
Expand Down Expand Up @@ -1155,7 +1199,7 @@ void ggml_metal_graph_compute(
[encoder setBytes:&gqa length:sizeof(gqa) atIndex:17];

if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q8_0 ||
src0t == GGML_TYPE_Q2_K) {// || src0t == GGML_TYPE_Q4_K) {
src0t == GGML_TYPE_Q2_K) { // || src0t == GGML_TYPE_Q4_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src0t == GGML_TYPE_Q4_K) {
Expand Down
Loading