-
Notifications
You must be signed in to change notification settings - Fork 4.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[fx] added activation checkpoint codegen (#1355)
- Loading branch information
1 parent
38fd884
commit 644582e
Showing
3 changed files
with
436 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
from .activation_checkpoint_codegen import ActivationCheckpointCodeGen | ||
|
||
__all__ = ['ActivationCheckpointCodeGen'] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,364 @@ | ||
import torch | ||
from typing import List, Callable, Any, Tuple, Dict | ||
from torch.fx.node import Node, Argument, map_arg, _type_repr, _get_qualified_name | ||
from torch.fx.graph import _Namespace, PythonCode, _custom_builtins, _is_from_torch, _format_target, magic_methods, CodeGen, _origin_type_map | ||
|
||
__all__ = ['ActivationCheckpointCodeGen'] | ||
|
||
|
||
class ActivationCheckpointCodeGen(CodeGen): | ||
|
||
def find_input_and_output_nodes(self, nodes: List[Node]): | ||
""" | ||
Find the input and output node names which are not found in the given list of nodes. | ||
""" | ||
input_nodes = [] | ||
output_nodes = [] | ||
|
||
# if a node has an input node which is not in the node list | ||
# we treat that input node as the input of the checkpoint function | ||
for node in nodes: | ||
for input_node in node._input_nodes.keys(): | ||
node_repr = repr(input_node) | ||
if input_node not in nodes and node_repr not in input_nodes: | ||
input_nodes.append(node_repr) | ||
|
||
# if a node has a user node which is not in the node list | ||
# we treat that user node as the node receiving the current node output | ||
for node in nodes: | ||
for output_node in node.users.keys(): | ||
node_repr = repr(node) | ||
if output_node not in nodes and node_repr not in output_nodes: | ||
output_nodes.append(node_repr) | ||
|
||
return input_nodes, output_nodes | ||
|
||
def find_ckpt_regions(self, nodes: List[Node]): | ||
""" | ||
Find the checkpoint regions given a list of consecutive nodes. The outputs will be list | ||
of tuples, each tuple is in the form of (start_index, end_index). | ||
""" | ||
ckpt_nodes = [] | ||
ckpt_regions = [] | ||
start = -1 | ||
end = -1 | ||
current_region = None | ||
|
||
for idx, node in enumerate(nodes): | ||
if hasattr(node, 'activation_checkpoint'): | ||
act_ckpt_label = node.activation_checkpoint | ||
|
||
# this activation checkpoint label is not set yet | ||
# meaning this is the first node of the activation ckpt region | ||
if current_region is None: | ||
current_region = act_ckpt_label | ||
start = idx | ||
|
||
# if activation checkpoint has changed | ||
# we restart the tracking | ||
# e.g. node ckpt states = [ckpt1, ckpt2, ckpt2, ckpt2] | ||
if act_ckpt_label != current_region: | ||
assert start != -1 | ||
ckpt_regions.append((start, idx - 1)) | ||
current_region = act_ckpt_label | ||
start = idx | ||
end = -1 | ||
elif current_region is not None and not hasattr(node, 'activation_checkpoint'): | ||
# used to check the case below | ||
# node ckpt states = [ckpt, ckpt, non-ckpt] | ||
end = idx - 1 | ||
assert start != -1 and end != -1 | ||
ckpt_regions.append((start, end)) | ||
start = end = -1 | ||
current_region = None | ||
else: | ||
pass | ||
return ckpt_regions | ||
|
||
def gen_ckpt_fn_def(self, label, free_vars: List[str]) -> str: | ||
""" | ||
Generate the checkpoint function definition | ||
""" | ||
return f"def checkpoint_{label}({', '.join(free_vars)}):" | ||
|
||
def gen_ckpt_output(self, output_vars: List[str]) -> str: | ||
""" | ||
Generate the return statement for checkpoint region | ||
""" | ||
return f"return {', '.join(output_vars)}" | ||
|
||
def gen_ckpt_usage(self, label, input_vars, output_vars): | ||
""" | ||
Generate the checkpoint function call code text | ||
""" | ||
outputs = ', '.join(output_vars) | ||
inputs = ', '.join(input_vars) | ||
return f'{outputs} = torch.utils.checkpoint.checkpoint(checkpoint_{label}, {inputs})' | ||
|
||
def _gen_python_code(self, nodes, root_module: str, namespace: _Namespace) -> PythonCode: | ||
free_vars: List[str] = [] | ||
body: List[str] = [] | ||
globals_: Dict[str, Any] = {} | ||
wrapped_fns: Dict[str, None] = {} | ||
|
||
# Wrap string in list to pass by reference | ||
maybe_return_annotation: List[str] = [''] | ||
|
||
def add_global(name_hint: str, obj: Any): | ||
"""Add an obj to be tracked as a global. | ||
We call this for names that reference objects external to the | ||
Graph, like functions or types. | ||
Returns: the global name that should be used to reference 'obj' in generated source. | ||
""" | ||
if _is_from_torch(obj) and obj != torch.device: # to support registering torch.device | ||
# HACK: workaround for how torch custom ops are registered. We | ||
# can't import them like normal modules so they must retain their | ||
# fully qualified name. | ||
return _get_qualified_name(obj) | ||
|
||
# normalize the name hint to get a proper identifier | ||
global_name = namespace.create_name(name_hint, obj) | ||
|
||
if global_name in globals_: | ||
assert globals_[global_name] is obj | ||
return global_name | ||
globals_[global_name] = obj | ||
return global_name | ||
|
||
# Pre-fill the globals table with registered builtins. | ||
for name, (_, obj) in _custom_builtins.items(): | ||
add_global(name, obj) | ||
|
||
def type_repr(o: Any): | ||
if o == (): | ||
# Empty tuple is used for empty tuple type annotation Tuple[()] | ||
return '()' | ||
|
||
typename = _type_repr(o) | ||
|
||
if hasattr(o, '__origin__'): | ||
# This is a generic type, e.g. typing.List[torch.Tensor] | ||
origin_type = _origin_type_map.get(o.__origin__, o.__origin__) | ||
origin_typename = add_global(_type_repr(origin_type), origin_type) | ||
|
||
if hasattr(o, '__args__'): | ||
# Assign global names for each of the inner type variables. | ||
args = [type_repr(arg) for arg in o.__args__] | ||
|
||
if len(args) == 0: | ||
# Bare type, such as `typing.Tuple` with no subscript | ||
# This code-path used in Python < 3.9 | ||
return origin_typename | ||
|
||
return f'{origin_typename}[{",".join(args)}]' | ||
else: | ||
# Bare type, such as `typing.Tuple` with no subscript | ||
# This code-path used in Python 3.9+ | ||
return origin_typename | ||
|
||
# Common case: this is a regular module name like 'foo.bar.baz' | ||
return add_global(typename, o) | ||
|
||
def _format_args(args: Tuple[Argument, ...], kwargs: Dict[str, Argument]) -> str: | ||
|
||
def _get_repr(arg): | ||
# Handle NamedTuples (if it has `_fields`) via add_global. | ||
if isinstance(arg, tuple) and hasattr(arg, '_fields'): | ||
qualified_name = _get_qualified_name(type(arg)) | ||
global_name = add_global(qualified_name, type(arg)) | ||
return f"{global_name}{repr(tuple(arg))}" | ||
return repr(arg) | ||
|
||
args_s = ', '.join(_get_repr(a) for a in args) | ||
kwargs_s = ', '.join(f'{k} = {_get_repr(v)}' for k, v in kwargs.items()) | ||
if args_s and kwargs_s: | ||
return f'{args_s}, {kwargs_s}' | ||
return args_s or kwargs_s | ||
|
||
# Run through reverse nodes and record the first instance of a use | ||
# of a given node. This represents the *last* use of the node in the | ||
# execution order of the program, which we will use to free unused | ||
# values | ||
node_to_last_use: Dict[Node, Node] = {} | ||
user_to_last_uses: Dict[Node, List[Node]] = {} | ||
|
||
def register_last_uses(n: Node, user: Node): | ||
if n not in node_to_last_use: | ||
node_to_last_use[n] = user | ||
user_to_last_uses.setdefault(user, []).append(n) | ||
|
||
for node in reversed(nodes): | ||
map_arg(node.args, lambda n: register_last_uses(n, node)) | ||
map_arg(node.kwargs, lambda n: register_last_uses(n, node)) | ||
|
||
def delete_unused_values(user: Node): | ||
""" | ||
Delete values after their last use. This ensures that values that are | ||
not used in the remainder of the code are freed and the memory usage | ||
of the code is optimal. | ||
""" | ||
if user.op == 'placeholder': | ||
return | ||
if user.op == 'output': | ||
body.append('\n') | ||
return | ||
nodes_to_delete = user_to_last_uses.get(user, []) | ||
if len(nodes_to_delete): | ||
to_delete_str = ' = '.join([repr(n) for n in nodes_to_delete] + ['None']) | ||
body.append(f'; {to_delete_str}\n') | ||
else: | ||
body.append('\n') | ||
|
||
def emit_node(node: Node): | ||
maybe_type_annotation = '' if node.type is None else f' : {type_repr(node.type)}' | ||
if node.op == 'placeholder': | ||
assert isinstance(node.target, str) | ||
maybe_default_arg = '' if not node.args else f' = {repr(node.args[0])}' | ||
free_vars.append(f'{node.target}{maybe_type_annotation}{maybe_default_arg}') | ||
raw_name = node.target.replace('*', '') | ||
if raw_name != repr(node): | ||
body.append(f'{repr(node)} = {raw_name}\n') | ||
return | ||
elif node.op == 'call_method': | ||
assert isinstance(node.target, str) | ||
body.append(f'{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.target)}' | ||
f'({_format_args(node.args[1:], node.kwargs)})') | ||
return | ||
elif node.op == 'call_function': | ||
assert callable(node.target) | ||
# pretty print operators | ||
if node.target.__module__ == '_operator' and node.target.__name__ in magic_methods: | ||
assert isinstance(node.args, tuple) | ||
body.append(f'{repr(node)}{maybe_type_annotation} = ' | ||
f'{magic_methods[node.target.__name__].format(*(repr(a) for a in node.args))}') | ||
return | ||
|
||
# pretty print inplace operators; required for jit.script to work properly | ||
# not currently supported in normal FX graphs, but generated by torchdynamo | ||
if node.target.__module__ == '_operator' and node.target.__name__ in inplace_methods: | ||
body.append(f'{inplace_methods[node.target.__name__].format(*(repr(a) for a in node.args))}; ' | ||
f'{repr(node)}{maybe_type_annotation} = {repr(node.args[0])}') | ||
return | ||
|
||
qualified_name = _get_qualified_name(node.target) | ||
global_name = add_global(qualified_name, node.target) | ||
# special case for getattr: node.args could be 2-argument or 3-argument | ||
# 2-argument: attribute access; 3-argument: fall through to attrib function call with default value | ||
if global_name == 'getattr' and \ | ||
isinstance(node.args, tuple) and \ | ||
isinstance(node.args[1], str) and \ | ||
node.args[1].isidentifier() and \ | ||
len(node.args) == 2: | ||
body.append( | ||
f'{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.args[1])}') | ||
return | ||
body.append( | ||
f'{repr(node)}{maybe_type_annotation} = {global_name}({_format_args(node.args, node.kwargs)})') | ||
if node.meta.get('is_wrapped', False): | ||
wrapped_fns.setdefault(global_name) | ||
return | ||
elif node.op == 'call_module': | ||
assert isinstance(node.target, str) | ||
body.append(f'{repr(node)}{maybe_type_annotation} = ' | ||
f'{_format_target(root_module, node.target)}({_format_args(node.args, node.kwargs)})') | ||
return | ||
elif node.op == 'get_attr': | ||
assert isinstance(node.target, str) | ||
body.append(f'{repr(node)}{maybe_type_annotation} = {_format_target(root_module, node.target)}') | ||
return | ||
elif node.op == 'output': | ||
if node.type is not None: | ||
maybe_return_annotation[0] = f" -> {type_repr(node.type)}" | ||
body.append(self.generate_output(node.args[0])) | ||
return | ||
raise NotImplementedError(f'node: {node.op} {node.target}') | ||
|
||
######################################### | ||
# Modified for activation checkpointing # | ||
######################################### | ||
# find the activation checkpoint regions | ||
ckpt_regions = self.find_ckpt_regions(nodes) | ||
start_idx = [item[0] for item in ckpt_regions] | ||
end_idx = [item[1] for item in ckpt_regions] | ||
input_vars = [] | ||
output_vars = [] | ||
within_ckpt_region = False | ||
|
||
node_list = list(nodes) | ||
|
||
# find the input and output var names for each region | ||
for idx, (start, end) in enumerate(ckpt_regions): | ||
ckpt_node_list = node_list[start:end + 1] | ||
inputs, outputs = self.find_input_and_output_nodes(ckpt_node_list) | ||
input_vars.append(inputs) | ||
output_vars.append(outputs) | ||
|
||
# append code text to body | ||
for idx, node in enumerate(node_list): | ||
# if this is the first node of the ckpt region | ||
# append the ckpt function defition | ||
if idx in start_idx: | ||
label = start_idx.index(idx) | ||
ckpt_fn_def = self.gen_ckpt_fn_def(label, input_vars[label]) | ||
body.append(f'{ckpt_fn_def}\n') | ||
within_ckpt_region = True | ||
|
||
# NOTE: emit_node does not emit a string with newline. It depends | ||
# on delete_unused_values to append one | ||
emit_node(node) | ||
|
||
# add indentation to the emmited node | ||
if within_ckpt_region: | ||
body[-1] = ' ' + body[-1] | ||
|
||
# delete unused values | ||
delete_unused_values(node) | ||
|
||
if idx in end_idx: | ||
# if this is the last node of the ckpt region | ||
# generate return statement | ||
label = end_idx.index(idx) | ||
return_statement = self.gen_ckpt_output(output_vars[label]) | ||
return_statement = f' {return_statement}\n' | ||
body.append(return_statement) | ||
|
||
# generate checkpoint function call in a new line | ||
usage = self.gen_ckpt_usage(label, input_vars[label], output_vars[label]) | ||
usage += '\n' | ||
body.append(usage) | ||
within_ckpt_region = False | ||
|
||
####################################################### | ||
# Code Change For Activation Checkpointing Stops Here # | ||
####################################################### | ||
|
||
if len(body) == 0: | ||
# If the Graph has no non-placeholder nodes, no lines for the body | ||
# have been emitted. To continue to have valid Python code, emit a | ||
# single pass statement | ||
body.append('pass\n') | ||
|
||
if len(wrapped_fns) > 0: | ||
wrap_name = add_global('wrap', torch.fx.wrap) | ||
wrap_stmts = '\n'.join([f'{wrap_name}("{name}")' for name in wrapped_fns]) | ||
else: | ||
wrap_stmts = '' | ||
|
||
if self._body_transformer: | ||
body = self._body_transformer(body) | ||
|
||
for name, value in self.additional_globals(): | ||
add_global(name, value) | ||
|
||
prologue = self.gen_fn_def(free_vars, maybe_return_annotation[0]) | ||
|
||
code = ''.join(body) | ||
code = '\n'.join(' ' + line for line in code.split('\n')) | ||
fn_code = f""" | ||
{wrap_stmts} | ||
{prologue} | ||
{code}""" | ||
return PythonCode(fn_code, globals_) |
Oops, something went wrong.