Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Merged by Bors] - feat(AlgebraicGeometry/GammaSpecAdjunction): a missing lemma #13412

Closed
wants to merge 17 commits into from
Closed
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
66 changes: 66 additions & 0 deletions Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
Original file line number Diff line number Diff line change
Expand Up @@ -368,6 +368,72 @@ lemma locallyRingedSpaceAdjunction_counit :
locallyRingedSpaceAdjunction.counit = (NatIso.op SpecΓIdentity.{u}).inv := rfl
#align algebraic_geometry.Γ_Spec.LocallyRingedSpace_adjunction_counit AlgebraicGeometry.ΓSpec.locallyRingedSpaceAdjunction_counit

lemma locallyRingedSpaceAdjunction_counit_app (R : CommRingCatᵒᵖ) :
(locallyRingedSpaceAdjunction.counit.app R).unop =
toOpen R.unop ⊤ := rfl

lemma locallyRingedSpaceAdjunction_counit_app' (R : Type u) [CommRing R] :
(locallyRingedSpaceAdjunction.counit.app <| op <| .of R).unop =
toOpen R ⊤ := rfl

lemma locallyRingedSpaceAdjunction_homEquiv_apply
{X : LocallyRingedSpace} {R : CommRingCatᵒᵖ}
(f : Γ.rightOp.obj X ⟶ R) :
locallyRingedSpaceAdjunction.homEquiv X R f =
identityToΓSpec.app X ≫ Spec.locallyRingedSpaceMap f.unop := rfl

lemma locallyRingedSpaceAdjunction_homEquiv_apply'
{X : LocallyRingedSpace} {R : Type u} [CommRing R]
(f : CommRingCat.of R ⟶ Γ.obj <| op X) :
locallyRingedSpaceAdjunction.homEquiv X (op <| CommRingCat.of R) (op f) =
identityToΓSpec.app X ≫ Spec.locallyRingedSpaceMap f := rfl

@[reassoc]
lemma locallyRingedSpaceAdjunction_homEquiv_apply_naturality
{X : LocallyRingedSpace} {R : CommRingCatᵒᵖ}
(f : Γ.rightOp.obj X ⟶ R) {U V} (i : U ⟶ V) :
(structureSheaf R.unop).val.map i ≫
(locallyRingedSpaceAdjunction.homEquiv X R f).1.c.app V =
(locallyRingedSpaceAdjunction.homEquiv X R f).1.c.app U ≫
((locallyRingedSpaceAdjunction.homEquiv X R f).val.base _* X.presheaf).map i :=
NatTrans.naturality _ _

@[reassoc]
lemma locallyRingedSpaceAdjunction_homEquiv_apply_naturality'
{X : LocallyRingedSpace} {R : Type u} [CommRing R]
(f : CommRingCat.of R ⟶ Γ.obj <| op X) {U V} (i : U ⟶ V) :
(structureSheaf R).val.map i ≫
(locallyRingedSpaceAdjunction.homEquiv X (op <| .of R) (op f)).1.c.app V =
(locallyRingedSpaceAdjunction.homEquiv X (op <| .of R) (op f)).1.c.app U ≫
((locallyRingedSpaceAdjunction.homEquiv X (op <| .of R) (op f)).val.base _*
X.presheaf).map i :=
NatTrans.naturality _ _

@[reassoc]
lemma locallyRingedSpaceAdjunction_homEquiv_apply_naturality''
{X : LocallyRingedSpace} {R : Type u} [CommRing R]
(f : Γ.rightOp.obj X ⟶ op (CommRingCat.of R)) {U V} (i : U ⟶ V) :
(structureSheaf R).val.map i ≫
(locallyRingedSpaceAdjunction.homEquiv X (op <| .of R) f).1.c.app V =
(locallyRingedSpaceAdjunction.homEquiv X (op <| .of R) f).1.c.app U ≫
((locallyRingedSpaceAdjunction.homEquiv X (op <| .of R) f).val.base _*
X.presheaf).map i :=
NatTrans.naturality _ _

lemma toOpen_comp_locallyRingedSpaceAdjunction_homEquiv_app
{X : LocallyRingedSpace} {R : Type u} [CommRing R]
(f : Γ.rightOp.obj X ⟶ op (CommRingCat.of R)) (U) :
StructureSheaf.toOpen R U.unop ≫
(locallyRingedSpaceAdjunction.homEquiv X (op <| CommRingCat.of R) f).1.c.app U =
f.unop ≫ X.presheaf.map (homOfLE le_top).op := by
rw [← StructureSheaf.toOpen_res _ _ _ (homOfLE le_top), Category.assoc,
locallyRingedSpaceAdjunction_homEquiv_apply_naturality'' f (homOfLE (le_top (a := U.unop))).op,
← locallyRingedSpaceAdjunction_counit_app']
simp_rw [← Γ_map_op]
rw [← Γ.rightOp_map_unop, ← Category.assoc, ← unop_comp, ← Adjunction.homEquiv_counit,
Equiv.symm_apply_apply]
rfl

-- Porting Note: Commented
--attribute [local semireducible] Spec.toLocallyRingedSpace

Expand Down
20 changes: 20 additions & 0 deletions Mathlib/AlgebraicGeometry/Spec.lean
Original file line number Diff line number Diff line change
Expand Up @@ -211,6 +211,26 @@ def Spec.locallyRingedSpaceObj (R : CommRingCat.{u}) : LocallyRingedSpace :=
set_option linter.uppercaseLean3 false in
#align algebraic_geometry.Spec.LocallyRingedSpace_obj AlgebraicGeometry.Spec.locallyRingedSpaceObj

lemma Spec.locallyRingedSpaceObj_sheaf (R : CommRingCat.{u}) :
(Spec.locallyRingedSpaceObj R).sheaf = structureSheaf R := rfl

lemma Spec.locallyRingedSpaceObj_sheaf' (R : Type u) [CommRing R] :
(Spec.locallyRingedSpaceObj <| CommRingCat.of R).sheaf = structureSheaf R := rfl

lemma Spec.locallyRingedSpaceObj_presheaf (R : CommRingCat.{u}) :
(Spec.locallyRingedSpaceObj R).presheaf = (structureSheaf R).1 := rfl

lemma Spec.locallyRingedSpaceObj_presheaf_map (R : CommRingCat.{u}) {U V} (i : U ⟶ V) :
(Spec.locallyRingedSpaceObj R).presheaf.map i =
(structureSheaf R).1.map i := rfl

lemma Spec.locallyRingedSpaceObj_presheaf' (R : Type u) [CommRing R] :
(Spec.locallyRingedSpaceObj <| CommRingCat.of R).presheaf = (structureSheaf R).1 := rfl

lemma Spec.locallyRingedSpaceObj_presheaf_map' (R : Type u) [CommRing R] {U V} (i : U ⟶ V) :
(Spec.locallyRingedSpaceObj <| CommRingCat.of R).presheaf.map i =
(structureSheaf R).1.map i := rfl

@[elementwise]
theorem stalkMap_toStalk {R S : CommRingCat.{u}} (f : R ⟶ S) (p : PrimeSpectrum S) :
toStalk R (PrimeSpectrum.comap f p) ≫ PresheafedSpace.stalkMap (Spec.sheafedSpaceMap f) p =
Expand Down
3 changes: 3 additions & 0 deletions Mathlib/CategoryTheory/Opposites.lean
Original file line number Diff line number Diff line change
Expand Up @@ -246,9 +246,12 @@
map f := (F.map f.op).op
#align category_theory.functor.right_op CategoryTheory.Functor.rightOp

lemma rightOp_map_unop {F : Cᵒᵖ ⥤ D} {X Y} (f : X ⟶ Y) :
(F.rightOp.map f).unop = (F.map f.op) := rfl

Check failure on line 250 in Mathlib/CategoryTheory/Opposites.lean

View workflow job for this annotation

GitHub Actions / Lint style

Mathlib/CategoryTheory/Opposites.lean:250 ERR_IND: If the theorem/def statement requires multiple lines, indent it correctly (4 spaces or 2 for `|`)

instance {F : C ⥤ D} [Full F] : Full F.op where
map_surjective f := ⟨(F.preimage f.unop).op, by simp⟩

Check failure on line 254 in Mathlib/CategoryTheory/Opposites.lean

View workflow job for this annotation

GitHub Actions / Lint style

Mathlib/CategoryTheory/Opposites.lean:254 ERR_IND: If the theorem/def statement requires multiple lines, indent it correctly (4 spaces or 2 for `|`)
instance {F : C ⥤ D} [Faithful F] : Faithful F.op where
map_injective h := Quiver.Hom.unop_inj <| by simpa using map_injective F (Quiver.Hom.op_inj h)

Expand Down
Loading