-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
121 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,121 @@ | ||
from multiprocessing.managers import DictProxy | ||
|
||
import torch | ||
from lightning.pytorch import LightningDataModule, LightningModule, Trainer | ||
from lightning.pytorch.utilities import rank_zero_info | ||
from torch.distributed import get_rank | ||
from torch.multiprocessing import Manager | ||
from torch.utils.data import DataLoader, Dataset, Subset | ||
|
||
from viscy.data.distributed import ShardedDistributedSampler | ||
|
||
|
||
class CachedDataset(Dataset): | ||
def __init__(self, shared_dict: DictProxy, length: int): | ||
self.rank = get_rank() | ||
print(f"=== Initializing cache pool for rank {self.rank} ===") | ||
self.shared_dict = shared_dict | ||
self.length = length | ||
|
||
def __getitem__(self, index): | ||
if index not in self.shared_dict: | ||
print(f"* Adding {index} to cache dict on rank {self.rank}") | ||
self.shared_dict[index] = torch.tensor(index).float()[None] | ||
return self.shared_dict[index] | ||
|
||
def __len__(self): | ||
return self.length | ||
|
||
|
||
class CachedDataModule(LightningDataModule): | ||
def __init__( | ||
self, | ||
length: int, | ||
split_ratio: float, | ||
batch_size: int, | ||
num_workers: int, | ||
persistent_workers: bool, | ||
): | ||
super().__init__() | ||
self.length = length | ||
self.split_ratio = split_ratio | ||
self.batch_size = batch_size | ||
self.num_workers = num_workers | ||
self.persistent_workers = persistent_workers | ||
|
||
def setup(self, stage): | ||
if stage != "fit": | ||
raise NotImplementedError("Only fit stage is supported.") | ||
shared_dict = Manager().dict() | ||
dataset = CachedDataset(shared_dict, self.length) | ||
split_idx = int(self.length * self.split_ratio) | ||
self.train_dataset = Subset(dataset, range(0, split_idx)) | ||
self.val_dataset = Subset(dataset, range(split_idx, self.length)) | ||
|
||
def train_dataloader(self): | ||
sampler = ShardedDistributedSampler(self.train_dataset, shuffle=True) | ||
return DataLoader( | ||
self.train_dataset, | ||
batch_size=self.batch_size, | ||
num_workers=self.num_workers, | ||
shuffle=False, | ||
persistent_workers=self.persistent_workers, | ||
drop_last=False, | ||
sampler=sampler, | ||
) | ||
|
||
def val_dataloader(self): | ||
sampler = ShardedDistributedSampler(self.val_dataset, shuffle=False) | ||
return DataLoader( | ||
self.val_dataset, | ||
batch_size=self.batch_size, | ||
num_workers=self.num_workers, | ||
shuffle=False, | ||
persistent_workers=self.persistent_workers, | ||
drop_last=False, | ||
sampler=sampler, | ||
) | ||
|
||
|
||
class DummyModel(LightningModule): | ||
def __init__(self): | ||
super().__init__() | ||
self.layer = torch.nn.Linear(1, 1) | ||
|
||
def forward(self, x): | ||
return self.layer(x) | ||
|
||
def on_train_start(self): | ||
rank_zero_info("=== Starting training ===") | ||
|
||
def on_train_epoch_start(self): | ||
rank_zero_info(f"=== Starting training epoch {self.current_epoch} ===") | ||
|
||
def training_step(self, batch, batch_idx): | ||
loss = torch.nn.functional.mse_loss(self.layer(batch), torch.zeros_like(batch)) | ||
return loss | ||
|
||
def validation_step(self, batch, batch_idx): | ||
loss = torch.nn.functional.mse_loss(self.layer(batch), torch.zeros_like(batch)) | ||
return loss | ||
|
||
def configure_optimizers(self): | ||
return torch.optim.Adam(self.parameters(), lr=1e-3) | ||
|
||
|
||
trainer = Trainer( | ||
max_epochs=5, | ||
strategy="ddp", | ||
accelerator="cpu", | ||
devices=3, | ||
use_distributed_sampler=False, | ||
enable_progress_bar=False, | ||
logger=False, | ||
enable_checkpointing=False, | ||
) | ||
|
||
data_module = CachedDataModule( | ||
length=50, batch_size=2, split_ratio=0.6, num_workers=4, persistent_workers=False | ||
) | ||
model = DummyModel() | ||
trainer.fit(model, data_module) |