Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Enable extraction of rewritten subgraph as model-local function #2065

Merged
merged 9 commits into from
Feb 20, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions onnxscript/optimizer/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
"optimize",
"optimize_ir",
"basic_constant_propagation",
"inline",
]

import onnx
Expand All @@ -17,6 +18,7 @@
import onnxscript.optimizer._legacy._optimizer as legacy_optimizer
import onnxscript.optimizer._legacy.constant_folding as legacy_constant_folding
from onnxscript import ir
from onnxscript.optimizer._inliner import inline
from onnxscript.optimizer._optimizer import optimize_ir
from onnxscript.optimizer._remove_unused import remove_unused_nodes

Expand Down
132 changes: 130 additions & 2 deletions onnxscript/rewriter/pattern.py
Original file line number Diff line number Diff line change
Expand Up @@ -1292,6 +1292,7 @@ def __init__(
remove_nodes: bool = True,
graph_pre_visitor: Callable[[], None] | None = None,
graph_post_visitor: Callable[[], None] | None = None,
as_function: bool = False,
) -> None:
"""Create a rewrite rule.

Expand All @@ -1312,8 +1313,13 @@ def __init__(
rewriting to the top-level graph or a function.
graph_post_visitor: A function that will be called after the rewriting
is complete for a graph or function.
as_function: If True, the matched nodes will be extracted into a model
local function. This is only supported when remove_nodes=True and
when the replacement subgraph has a single node, representing the
function call.
"""

if as_function and not remove_nodes:
raise ValueError("as_function=True is only supported when remove_nodes=True.")
if not isinstance(target_pattern, GraphPattern):
target_pattern = _to_graph_pattern(target_pattern)
self._target_pattern = target_pattern
Expand All @@ -1338,6 +1344,7 @@ def __init__(
self.remove_nodes = remove_nodes
self.graph_pre_visitor = graph_pre_visitor
self.graph_post_visitor = graph_post_visitor
self.as_function = as_function

def __str__(self) -> str:
return self.name if self.name else "Anonymous Rule"
Expand Down Expand Up @@ -1529,6 +1536,92 @@ def rewrite(self, op, *args, **kwargs):
raise NotImplementedError("Method 'rewrite' must be implemented by derived class.")


def _copy_for_function(
inputs: Sequence[ir.Value | None], nodes: Sequence[ir.Node], outputs: Sequence[ir.Value]
):
"""Utility function to extract a subgraph out as a function."""
value_map: dict[ir.Value, ir.Value] = {}
function_inputs: list[ir.Value] = []
for input in inputs:
# Create a function input (formal-parameter value) to represent this value:
if input is None:
raise NotImplementedError("None inputs not supported.")
new_value = ir.Value(
name=input.name,
shape=input.shape,
type=input.type,
doc_string=input.doc_string,
)
value_map[input] = new_value
function_inputs.append(new_value)

def copy_value(value: ir.Value | None) -> ir.Value | None:
if value is None:
return None
if value not in value_map:
raise ValueError(f"Value {value} not found in value_map.")
return value_map[value]

def copy_attr_value(attr: ir.Attr | ir.RefAttr) -> ir.Attr | ir.RefAttr:
if not isinstance(attr, ir.Attr):
# No need to support this currently, as rewriting inside a function is
# not used, as it has several challenges.
raise NotImplementedError("RefAttr not supported.")
if attr.type in {ir.AttributeType.GRAPH, ir.AttributeType.GRAPHS}:
# No need to support this currently, as rewriting control-flow constructs
# is not used and has several challenges.
raise NotImplementedError("Graph attributes not supported.")
# Primitive attributes are immutable by design and can be shared.
return attr

def copy_node(node: ir.Node) -> ir.Node:
new_inputs = [copy_value(v) for v in node.inputs]
new_attributes = [copy_attr_value(v) for v in node.attributes.values()]
new_node = ir.Node(
node.domain,
node.op_type,
new_inputs,
new_attributes,
overload=node.overload,
num_outputs=len(node.outputs),
graph=None,
name=node.name,
doc_string=node.doc_string, # type: ignore
metadata_props=node.metadata_props.copy(),
)
new_outputs = new_node.outputs
for i, output in enumerate(node.outputs):
value_map[output] = new_outputs[i]
if output.name is not None:
new_outputs[i].name = output.name
return new_node

function_nodes = [copy_node(node) for node in nodes]
function_outputs = [copy_value(v) for v in outputs]
return (function_inputs, function_nodes, function_outputs)


def _get_new_overload(model: ir.Model, domain: str, name: str) -> str:
"""Get a new overload for the given domain and name.

Args:
model: The model to which the new overload will be added.
domain: The domain of the new overload.
name: The opname of the new overload.

Returns:
The new overload name.
"""
existing_functions = model.functions
# Just a simple implementation for now
overload = 1
while True:
overload_name = str(overload)
if (domain, name, overload_name) not in existing_functions:
return overload_name
overload += 1


class RewriteRuleSet:
def __init__(self, rules: Sequence[RewriteRule], *, commute: bool = False) -> None:
if commute:
Expand Down Expand Up @@ -1591,6 +1684,37 @@ def _apply_to_graph_or_function(
# is sufficient for patterns with a single output-node "node", which can serve as the
# insertion-point.
onnxscript.optimizer.basic_constant_propagation(delta.new_nodes)
if rule.as_function:
# Create a function out of a copy of the matched nodes
if len(delta.new_nodes) != 1:
raise ValueError(
"as_function=True is only supported for patterns with a single replacement node."
)
call_node = delta.new_nodes[0]
domain = call_node.domain
name = call_node.op_type
overload = _get_new_overload(model, domain, name)
call_node.overload = overload

# Create topologically sorted list of nodes to be replaced.
unsorted_nodes = set(delta.match.nodes)
original_nodes = [n for n in graph_or_function if n in unsorted_nodes]
# Create new inputs/nodes/outputs for the function
inputs, nodes, outputs = _copy_for_function(
call_node.inputs, original_nodes, delta.match.outputs
)

used_domains: set[str] = {node.domain for node in original_nodes}
parent_opset_imports = graph_or_function.opset_imports
used_opset_imports = {
k: v for k, v in parent_opset_imports.items() if k in used_domains
}

graph = ir.Graph(
inputs, outputs, nodes=nodes, opset_imports=used_opset_imports
)
f = ir.Function(domain, name, overload, graph=graph, attributes=())
model.functions[f.identifier()] = f
_convenience.replace_nodes_and_values(
graph_or_function,
node,
Expand All @@ -1599,6 +1723,7 @@ def _apply_to_graph_or_function(
delta.match.outputs,
delta.new_outputs,
)

count += 1
if rule.graph_post_visitor:
rule.graph_post_visitor()
Expand All @@ -1623,10 +1748,13 @@ def apply_to_model(
assert isinstance(model, ir.Model)
tracer = MatchingTracer() if debug else None
onnxscript.optimizer.basic_constant_propagation(model.graph)
# Rewriting may introduce new functions. In the following loop,
# we restrict rewriting to original functions, not newly introduced ones.
original_functions = list(model.functions.values())
count = self._apply_to_graph_or_function(
model, model.graph, verbose=verbose, tracer=tracer
)
for function in model.functions.values():
for function in original_functions:
onnxscript.optimizer.basic_constant_propagation(function)
count += self._apply_to_graph_or_function(
model, function, verbose=verbose, tracer=tracer
Expand Down
90 changes: 90 additions & 0 deletions onnxscript/rewriter/pattern_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
import onnx.checker
import onnx.parser

import onnxscript.optimizer
from onnxscript import FLOAT, ir, script
from onnxscript import opset17 as op
from onnxscript.rewriter import cast_constant_of_shape, pattern
Expand Down Expand Up @@ -577,6 +578,95 @@ def test_model(x: FLOAT[16, 8]) -> FLOAT[16, 4]:
self.assertIn(init_name, model.graph.initializers)
self.assertIs(last_node.inputs[1], model.graph.initializers[init_name])

def test_extract_function(self):
def source_pattern(op, x, y, z):
sum = op.Add(x, y)
return op.Mul(sum, z)

def replacement(op, x, y, z):
return op.AddMul(x, y, z, _domain="some.domain")

rule = pattern.RewriteRule(source_pattern, replacement, as_function=True)

@script()
def test_model(x: FLOAT[1024], y: FLOAT[1024], z: FLOAT[1024]) -> FLOAT[1024]:
return op.Mul(op.Add(x, y), z)

model_proto = test_model.to_model_proto()
model = ir.serde.deserialize_model(model_proto)
rule.apply_to_model(model)
self.assertEqual(len(model.functions), 1)
self.assertEqual(len(model.graph), 1)
call_node = model.graph.node(0)
self.assertEqual(call_node.domain, "some.domain")
self.assertEqual(call_node.op_type, "AddMul")
function_id = call_node.op_identifier()
self.assertIn(function_id, model.functions)
function = model.functions[function_id]
self.assertEqual([x.op_type for x in function], ["Add", "Mul"])
onnxscript.optimizer.inline(model)
self.assertEqual([x.op_type for x in model.graph], ["Add", "Mul"])

def test_extract_function_with_attr(self):
def source_pattern(op, x, y):
sum = op.Add(x, y)
return op.Transpose(sum, perm=[1, 0])

def replacement(op, x, y):
return op.AddTranspose(x, y, _domain="some.domain")

rule = pattern.RewriteRule(source_pattern, replacement, as_function=True)

@script()
def test_model(x: FLOAT[1024, 512], y: FLOAT[1024, 512]) -> FLOAT[512, 1024]:
return op.Transpose(op.Add(x, y), perm=[1, 0])

model_proto = test_model.to_model_proto()
model = ir.serde.deserialize_model(model_proto)
rule.apply_to_model(model)
self.assertEqual(len(model.functions), 1)
self.assertEqual(len(model.graph), 1)
call_node = model.graph.node(0)
self.assertEqual(call_node.domain, "some.domain")
self.assertEqual(call_node.op_type, "AddTranspose")
function_id = call_node.op_identifier()
self.assertIn(function_id, model.functions)
function = model.functions[function_id]
self.assertEqual([x.op_type for x in function], ["Add", "Transpose"])
transpose_node = function[1]
self.assertEqual(transpose_node.attributes["perm"].value, [1, 0])
onnxscript.optimizer.inline(model)
self.assertEqual([x.op_type for x in model.graph], ["Add", "Transpose"])

def test_extract_repeated_function(self):
def source_pattern(op, x, y, z):
sum = op.Add(x, y)
return op.Mul(sum, z)

def replacement(op, x, y, z):
return op.AddMul(x, y, z, _domain="some.domain")

rule = pattern.RewriteRule(source_pattern, replacement, as_function=True)

@script()
def test_model(x: FLOAT[1024], y: FLOAT[1024], z: FLOAT[1024]) -> FLOAT[1024]:
t1 = op.Mul(op.Add(x, y), z)
t2 = op.Mul(op.Add(t1, y), z)
return t2

model_proto = test_model.to_model_proto()
model = ir.serde.deserialize_model(model_proto)
rule.apply_to_model(model)
self.assertEqual(len(model.functions), 2)
self.assertEqual(len(model.graph), 2)
for call_node in model.graph:
self.assertEqual(call_node.domain, "some.domain")
self.assertEqual(call_node.op_type, "AddMul")
function_id = call_node.op_identifier()
self.assertIn(function_id, model.functions)
onnxscript.optimizer.inline(model)
self.assertEqual([x.op_type for x in model.graph], ["Add", "Mul", "Add", "Mul"])


class PatternBuilderTest(unittest.TestCase):
def test_pattern_builder_context(self):
Expand Down
Loading