Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

QP/SDP tests for pytest #150

Merged
merged 1 commit into from
Jan 13, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
86 changes: 86 additions & 0 deletions python/clarabel/tests/test_basic_qp.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
import clarabel
import pytest
import numpy as np
from scipy import sparse


@pytest.fixture
def basic_qp_data():

P = sparse.csc_matrix([[4., 1.], [1., 2.]])
P = sparse.triu(P).tocsc()

A = sparse.csc_matrix(
[[-1., -1.],
[-1., 0.],
[0., -1.],
[1., 1.],
[1., 0.],
[0., 1.]])

q = np.array([1., 1.])
b = np.array([-1., 0., 0., 1., 0.7, 0.7])

cones = [clarabel.NonnegativeConeT(3), clarabel.NonnegativeConeT(3)]
settings = clarabel.DefaultSettings()
return P, q, A, b, cones, settings


@pytest.fixture
def basic_qp_data_dual_inf():

P = sparse.csc_matrix([[1., 1.], [1., 1.]])
P = sparse.triu(P).tocsc()

A = sparse.csc_matrix(
[[1., 1.],
[1., 0.]])

q = np.array([1., -1.])
b = np.array([1., 1.])

cones = [clarabel.NonnegativeConeT(2)]
settings = clarabel.DefaultSettings()
return P, q, A, b, cones, settings


def test_qp_feasible(basic_qp_data):

P, q, A, b, cones, settings = basic_qp_data

solver = clarabel.DefaultSolver(P, q, A, b, cones, settings)
solution = solver.solve()

refsol = np.array([0.3, 0.7])
refobj = 1.8800000298331538

assert solution.status == clarabel.SolverStatus.Solved
assert np.allclose(solution.x, refsol)
assert np.allclose(solution.obj_val, refobj)
assert np.allclose(solution.obj_val_dual, refobj)


def test_qp_primal_infeasible(basic_qp_data):

P, q, A, b, cones, settings = basic_qp_data
b[0] = -1.
b[3] = -1.

solver = clarabel.DefaultSolver(P, q, A, b, cones, settings)
solution = solver.solve()

assert solution.status == clarabel.SolverStatus.PrimalInfeasible
assert np.isnan(solution.obj_val)
assert np.isnan(solution.obj_val_dual)


def test_qp_dual_infeasible(basic_qp_data_dual_inf):

P, q, A, b, cones, settings = basic_qp_data_dual_inf

solver = clarabel.DefaultSolver(P, q, A, b, cones, settings)
solution = solver.solve()

assert solution.status == clarabel.SolverStatus.DualInfeasible
assert np.isnan(solution.obj_val)
assert np.isnan(solution.obj_val_dual)
81 changes: 81 additions & 0 deletions python/clarabel/tests/test_basic_sdp.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
import clarabel
import pytest
import numpy as np
from scipy import sparse
from scipy.sparse import vstack


@pytest.fixture
def basic_sdp_data():

P = sparse.eye(6).tocsc()
A = sparse.eye(6).tocsc()

q = np.zeros(6)
b = np.array([-3., 1., 4., 1., 2., 5.])

cones = [clarabel.PSDTriangleConeT(3)]
settings = clarabel.DefaultSettings()
return P, q, A, b, cones, settings


@pytest.fixture
def basic_sdp_solution():

refsol = np.array([
-3.0729833267361095,
0.3696004167288786,
-0.022226685581313674,
0.31441213129613066,
-0.026739700851545107,
-0.016084530571308823,
])
refobj = 4.840076866013861

return refsol, refobj


def test_sdp_feasible(basic_sdp_data, basic_sdp_solution):

P, q, A, b, cones, settings = basic_sdp_data
refsol, refobj = basic_sdp_solution

solver = clarabel.DefaultSolver(P, q, A, b, cones, settings)
solution = solver.solve()

assert solution.status == clarabel.SolverStatus.Solved
assert np.allclose(solution.x, refsol)
assert np.allclose(solution.obj_val, refobj)
assert np.allclose(solution.obj_val_dual, refobj)


def test_sdp_empty_cone(basic_sdp_data, basic_sdp_solution):

P, q, A, b, cones, settings = basic_sdp_data
refsol, refobj = basic_sdp_solution

cones = np.append(cones, clarabel.PSDTriangleConeT(0))

solver = clarabel.DefaultSolver(P, q, A, b, cones, settings)
solution = solver.solve()

assert solution.status == clarabel.SolverStatus.Solved
assert np.allclose(solution.x, refsol)
assert np.allclose(solution.obj_val, refobj)
assert np.allclose(solution.obj_val_dual, refobj)


def test_sdp_primal_infeasible(basic_sdp_data):

P, q, A, b, cones, settings = basic_sdp_data

A = vstack((A, -A))
b = np.pad(b, (0, len(b)))
cones = np.concatenate((cones, cones))

solver = clarabel.DefaultSolver(P, q, A, b, cones, settings)
solution = solver.solve()

assert solution.status == clarabel.SolverStatus.PrimalInfeasible
assert np.isnan(solution.obj_val)
assert np.isnan(solution.obj_val_dual)
43 changes: 18 additions & 25 deletions tests/basic_sdp.rs
Original file line number Diff line number Diff line change
Expand Up @@ -26,9 +26,24 @@ fn basic_sdp_data() -> (
(P, c, A, b, cones)
}

fn basic_sdp_solution() -> (Vec<f64>, f64) {
let refsol = vec![
-3.0729833267361095,
0.3696004167288786,
-0.022226685581313674,
0.31441213129613066,
-0.026739700851545107,
-0.016084530571308823,
];
let refobj = 4.840076866013861;

(refsol, refobj)
}

#[test]
fn test_sdp_feasible() {
let (P, c, A, b, cones) = basic_sdp_data();
let (refsol, refobj) = basic_sdp_solution();

let settings = DefaultSettings::default();

Expand All @@ -37,25 +52,15 @@ fn test_sdp_feasible() {
solver.solve();

assert_eq!(solver.solution.status, SolverStatus::Solved);

let refsol = vec![
-3.0729833267361095,
0.3696004167288786,
-0.022226685581313674,
0.31441213129613066,
-0.026739700851545107,
-0.016084530571308823,
];

assert!(solver.solution.x.dist(&refsol) <= 1e-6);

let refobj = 4.840076866013861;
assert!(f64::abs(solver.info.cost_primal - refobj) <= 1e-6);
}

#[test]
fn empty_sdp_cone() {
fn test_sdp_empty_cone() {
let (P, c, A, b, mut cones) = basic_sdp_data();
let (refsol, refobj) = basic_sdp_solution();

cones.append(&mut vec![PSDTriangleConeT(0)]);

let settings = DefaultSettings::default();
Expand All @@ -65,19 +70,7 @@ fn empty_sdp_cone() {
solver.solve();

assert_eq!(solver.solution.status, SolverStatus::Solved);

let refsol = vec![
-3.0729833267361095,
0.3696004167288786,
-0.022226685581313674,
0.31441213129613066,
-0.026739700851545107,
-0.016084530571308823,
];

assert!(solver.solution.x.dist(&refsol) <= 1e-6);

let refobj = 4.840076866013861;
assert!(f64::abs(solver.info.cost_primal - refobj) <= 1e-6);
}

Expand Down