Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

implement Transform for Matrix3 and Matrix4 #347

Merged
merged 5 commits into from
May 9, 2016
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
151 changes: 119 additions & 32 deletions src/matrix.rs
Original file line number Diff line number Diff line change
Expand Up @@ -26,8 +26,9 @@ use angle::Rad;
use approx::ApproxEq;
use euler::Euler;
use num::BaseFloat;
use point::Point3;
use point::{Point2, Point3};
use quaternion::Quaternion;
use transform::{Transform, Transform2, Transform3};
use vector::{Vector2, Vector3, Vector4};

/// A 2 x 2, column major matrix
Expand Down Expand Up @@ -178,37 +179,6 @@ impl<S: BaseFloat> Matrix3<S> {
}
}

impl<A> From<Euler<A>> for Matrix3<<A as Angle>::Unitless> where
A: Angle + Into<Rad<<A as Angle>::Unitless>>,
{
fn from(src: Euler<A>) -> Matrix3<A::Unitless> {
// http://en.wikipedia.org/wiki/Rotation_matrix#General_rotations
let (sx, cx) = Rad::sin_cos(src.x.into());
let (sy, cy) = Rad::sin_cos(src.y.into());
let (sz, cz) = Rad::sin_cos(src.z.into());

Matrix3::new(cy * cz, cy * sz, -sy,
-cx * sz + sx * sy * cz, cx * cz + sx * sy * sz, sx * cy,
sx * sz + cx * sy * cz, -sx * cz + cx * sy * sz, cx * cy)
}
}

impl<A> From<Euler<A>> for Matrix4<<A as Angle>::Unitless> where
A: Angle + Into<Rad<<A as Angle>::Unitless>>,
{
fn from(src: Euler<A>) -> Matrix4<A::Unitless> {
// http://en.wikipedia.org/wiki/Rotation_matrix#General_rotations
let (sx, cx) = Rad::sin_cos(src.x.into());
let (sy, cy) = Rad::sin_cos(src.y.into());
let (sz, cz) = Rad::sin_cos(src.z.into());

Matrix4::new(cy * cz, cy * sz, -sy, A::Unitless::zero(),
-cx * sz + sx * sy * cz, cx * cz + sx * sy * sz, sx * cy, A::Unitless::zero(),
sx * sz + cx * sy * cz, -sx * cz + cx * sy * sz, cx * cy, A::Unitless::zero(),
A::Unitless::zero(), A::Unitless::zero(), A::Unitless::zero(), A::Unitless::one())
}
}

impl<S: BaseFloat> Matrix4<S> {
/// Create a new matrix, providing values for each index.
#[inline]
Expand Down Expand Up @@ -786,6 +756,92 @@ impl<S: BaseFloat> ApproxEq for Matrix4<S> {
}
}

impl<S: BaseFloat> Transform<Point2<S>> for Matrix3<S> {
fn one() -> Matrix3<S> {
One::one()
}

fn look_at(eye: Point2<S>, center: Point2<S>, up: Vector2<S>) -> Matrix3<S> {
let dir = center - eye;
Matrix3::from(Matrix2::look_at(dir, up))
}

fn transform_vector(&self, vec: Vector2<S>) -> Vector2<S> {
(self * vec.extend(S::zero())).truncate()
}

fn transform_point(&self, point: Point2<S>) -> Point2<S> {
Point2::from_vec((self * Point3::new(point.x, point.y, S::one()).to_vec()).truncate())
}

fn concat(&self, other: &Matrix3<S>) -> Matrix3<S> {
self * other
}

fn inverse_transform(&self) -> Option<Matrix3<S>> {
SquareMatrix::invert(self)
}
}

impl<S: BaseFloat> Transform<Point3<S>> for Matrix3<S> {
fn one() -> Matrix3<S> {
One::one()
}

fn look_at(eye: Point3<S>, center: Point3<S>, up: Vector3<S>) -> Matrix3<S> {
let dir = center - eye;
Matrix3::look_at(dir, up)
}

fn transform_vector(&self, vec: Vector3<S>) -> Vector3<S> {
self * vec
}

fn transform_point(&self, point: Point3<S>) -> Point3<S> {
Point3::from_vec(self * point.to_vec())
}

fn concat(&self, other: &Matrix3<S>) -> Matrix3<S> {
self * other
}

fn inverse_transform(&self) -> Option<Matrix3<S>> {
SquareMatrix::invert(self)
}
}

impl<S: BaseFloat> Transform<Point3<S>> for Matrix4<S> {
fn one() -> Matrix4<S> {
One::one()
}

fn look_at(eye: Point3<S>, center: Point3<S>, up: Vector3<S>) -> Matrix4<S> {
Matrix4::look_at(eye, center, up)
}

fn transform_vector(&self, vec: Vector3<S>) -> Vector3<S> {
(self * vec.extend(S::zero())).truncate()
}

fn transform_point(&self, point: Point3<S>) -> Point3<S> {
Point3::from_homogeneous(self * point.to_homogeneous())
}

fn concat(&self, other: &Matrix4<S>) -> Matrix4<S> {
self * other
}

fn inverse_transform(&self) -> Option<Matrix4<S>> {
SquareMatrix::invert(self)
}
}

impl<S: BaseFloat> Transform2<S> for Matrix3<S> {}

impl<S: BaseFloat> Transform3<S> for Matrix3<S> {}

impl<S: BaseFloat> Transform3<S> for Matrix4<S> {}

macro_rules! impl_operators {
($MatrixN:ident, $VectorN:ident { $($field:ident : $row_index:expr),+ }) => {
impl_operator!(<S: BaseFloat> Neg for $MatrixN<S> {
Expand Down Expand Up @@ -936,6 +992,37 @@ index_operators!(Matrix4<S>, 4, Vector4<S>, usize);
// index_operators!(Matrix3<S>, 3, [Vector3<S>], RangeFull);
// index_operators!(Matrix4<S>, 4, [Vector4<S>], RangeFull);

impl<A> From<Euler<A>> for Matrix3<<A as Angle>::Unitless> where
A: Angle + Into<Rad<<A as Angle>::Unitless>>,
{
fn from(src: Euler<A>) -> Matrix3<A::Unitless> {
// http://en.wikipedia.org/wiki/Rotation_matrix#General_rotations
let (sx, cx) = Rad::sin_cos(src.x.into());
let (sy, cy) = Rad::sin_cos(src.y.into());
let (sz, cz) = Rad::sin_cos(src.z.into());

Matrix3::new(cy * cz, cy * sz, -sy,
-cx * sz + sx * sy * cz, cx * cz + sx * sy * sz, sx * cy,
sx * sz + cx * sy * cz, -sx * cz + cx * sy * sz, cx * cy)
}
}

impl<A> From<Euler<A>> for Matrix4<<A as Angle>::Unitless> where
A: Angle + Into<Rad<<A as Angle>::Unitless>>,
{
fn from(src: Euler<A>) -> Matrix4<A::Unitless> {
// http://en.wikipedia.org/wiki/Rotation_matrix#General_rotations
let (sx, cx) = Rad::sin_cos(src.x.into());
let (sy, cy) = Rad::sin_cos(src.y.into());
let (sz, cz) = Rad::sin_cos(src.z.into());

Matrix4::new(cy * cz, cy * sz, -sy, A::Unitless::zero(),
-cx * sz + sx * sy * cz, cx * cz + sx * sy * sz, sx * cy, A::Unitless::zero(),
sx * sz + cx * sy * cz, -sx * cz + cx * sy * sz, cx * cy, A::Unitless::zero(),
A::Unitless::zero(), A::Unitless::zero(), A::Unitless::zero(), A::Unitless::one())
}
}

macro_rules! fixed_array_conversions {
($MatrixN:ident <$S:ident> { $($field:ident : $index:expr),+ }, $n:expr) => {
impl<$S> Into<[[$S; $n]; $n]> for $MatrixN<$S> {
Expand Down
12 changes: 6 additions & 6 deletions src/transform.rs
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ pub trait Transform<P: EuclideanSpace>: Sized {
fn concat(&self, other: &Self) -> Self;

/// Create a transform that "un-does" this one.
fn invert(&self) -> Option<Self>;
fn inverse_transform(&self) -> Option<Self>;

/// Combine this transform with another, in-place.
#[inline]
Expand All @@ -64,8 +64,8 @@ pub trait Transform<P: EuclideanSpace>: Sized {
/// Invert this transform in-place, failing if the transformation is not
/// invertible.
#[inline]
fn invert_self(&mut self) {
*self = self.invert().unwrap()
fn to_inverse(&mut self) {
*self = self.inverse_transform().unwrap()
}
}

Expand Down Expand Up @@ -122,7 +122,7 @@ impl<P: EuclideanSpace, R: Rotation<P>> Transform<P> for Decomposed<P::Diff, R>
}
}

fn invert(&self) -> Option<Decomposed<P::Diff, R>> {
fn inverse_transform(&self) -> Option<Decomposed<P::Diff, R>> {
if self.scale.approx_eq(&P::Scalar::zero()) {
None
} else {
Expand Down Expand Up @@ -196,8 +196,8 @@ impl<S: BaseFloat> Transform<Point3<S>> for AffineMatrix3<S> {
}

#[inline]
fn invert(&self) -> Option<AffineMatrix3<S>> {
self.mat.invert().map(|m| AffineMatrix3{ mat: m })
fn inverse_transform(&self) -> Option<AffineMatrix3<S>> {
SquareMatrix::invert(& self.mat).map(|m| AffineMatrix3{ mat: m })
}
}

Expand Down
2 changes: 1 addition & 1 deletion tests/transform.rs
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ fn test_invert() {
rot: Quaternion::new(0.5f64,0.5,0.5,0.5),
disp: Vector3::new(6.0f64,-7.0,8.0)
};
let ti = t.invert().expect("Expected successful inversion");
let ti = t.inverse_transform().expect("Expected successful inversion");
let vt = t.transform_vector(v);
assert!(v.approx_eq(&ti.transform_vector(vt)));
}
Expand Down