Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update "End-to-End Tissue Microarray Image Analysis with Galaxy-ME" tools, workflow, and tutorial #5810

Open
wants to merge 9 commits into
base: main
Choose a base branch
from
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
31 changes: 31 additions & 0 deletions topics/imaging/tutorials/multiplex-tissue-imaging-TMA/tutorial.bib
Original file line number Diff line number Diff line change
Expand Up @@ -147,3 +147,34 @@ @article{Palla2022
title = {Squidpy: a scalable framework for spatial omics analysis},
journal = {Nature Methods}
}

@article{Nirmal2024,
title = {SCIMAP: A Python Toolkit for Integrated Spatial
Analysis of Multiplexed Imaging Data},
volume = {9},
ISSN = {2475-9066},
url = {http://dx.doi.org/10.21105/joss.06604},
DOI = {10.21105/joss.06604},
number = {97},
journal = {Journal of Open Source Software},
publisher = {The Open Journal},
author = {Nirmal, Ajit J. and Sorger, Peter K.},
year = {2024},
month = may,
pages = {6604}
}

@article{Zhang2022,
title = {Identification of cell types in multiplexed in situ images by combining protein expression and spatial information using CELESTA},
volume = {19},
ISSN = {1548-7105},
url = {http://dx.doi.org/10.1038/s41592-022-01498-z},
DOI = {10.1038/s41592-022-01498-z},
number = {6},
journal = {Nature Methods},
publisher = {Springer Science and Business Media LLC},
author = {Zhang, Weiruo and Li, Irene and Reticker-Flynn, Nathan E. and Good, Zinaida and Chang, Serena and Samusik, Nikolay and Saumyaa, Saumyaa and Li, Yuanyuan and Zhou, Xin and Liang, Rachel and Kong, Christina S. and Le, Quynh-Thu and Gentles, Andrew J. and Sunwoo, John B. and Nolan, Garry P. and Engleman, Edgar G. and Plevritis, Sylvia K.},
year = {2022},
month = jun,
pages = {759–769}
}
118 changes: 73 additions & 45 deletions topics/imaging/tutorials/multiplex-tissue-imaging-TMA/tutorial.md

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
@@ -0,0 +1,183 @@
- doc: Test outline for GTN_Exemplar_002_TMA_workflow_Feb2025
job:
markers.csv:
class: File
location: https://zenodo.org/records/7622545/files/markers.csv
filetype: csv
PhenotypeWorkflow:
class: File
location: https://zenodo.org/records/7622545/files/exemplar_002_phenotypes.csv
filetype: csv
Raw cycle images:
class: Collection
collection_type: list
elements:
- class: File
identifier: exemplar-002-cycle-01.ome.tiff
location: https://zenodo.org/record/7622545/files/exemplar-002-cycle-01.ome.tiff
- class: File
identifier: exemplar-002-cycle-02.ome.tiff
location: https://zenodo.org/record/7622545/files/exemplar-002-cycle-02.ome.tiff
- class: File
identifier: exemplar-002-cycle-03.ome.tiff
location: https://zenodo.org/record/7622545/files/exemplar-002-cycle-03.ome.tiff
- class: File
identifier: exemplar-002-cycle-04.ome.tiff
location: https://zenodo.org/record/7622545/files/exemplar-002-cycle-04.ome.tiff
- class: File
identifier: exemplar-002-cycle-05.ome.tiff
location: https://zenodo.org/record/7622545/files/exemplar-002-cycle-05.ome.tiff
- class: File
identifier: exemplar-002-cycle-06.ome.tiff
location: https://zenodo.org/record/7622545/files/exemplar-002-cycle-06.ome.tiff
- class: File
identifier: exemplar-002-cycle-07.ome.tiff
location: https://zenodo.org/record/7622545/files/exemplar-002-cycle-07.ome.tiff
- class: File
identifier: exemplar-002-cycle-08.ome.tiff
location: https://zenodo.org/record/7622545/files/exemplar-002-cycle-08.ome.tiff
- class: File
identifier: exemplar-002-cycle-09.ome.tiff
location: https://zenodo.org/record/7622545/files/exemplar-002-cycle-09.ome.tiff
- class: File
identifier: exemplar-002-cycle-10.ome.tiff
location: https://zenodo.org/record/7622545/files/exemplar-002-cycle-10.ome.tiff
outputs:
Registered image:
checksum: "sha1$4926712ce6abcaa8071fb60508696e0b8437a0b5"
TMA dearray map:
checksum: "sha1$5d31f904254b7503e6a46b96c342d2ed264f9d23"
DFP images:
element_tests:
exemplar-002-cycle-01.ome.tiff:
checksum: "sha1$931bdb12c458395783007b372e5e0c4d5e26cfcd"
exemplar-002-cycle-02.ome.tiff:
checksum: "sha1$29946bb75af2a3d8b3bfa70cd71b76191c3e3b28"
exemplar-002-cycle-03.ome.tiff:
checksum: "sha1$a0e9bf2d55a3d50212daf3137c17527c42cacdc3"
exemplar-002-cycle-04.ome.tiff:
checksum: "sha1$7fe1e30fb53ffde13168f6ce0a1d34b87f0c45ea"
exemplar-002-cycle-05.ome.tiff:
checksum: "sha1$3977376255fa75086fc0ee25d2d8d06150abb252"
exemplar-002-cycle-06.ome.tiff:
checksum: "sha1$37368db7fe1e0d271206b42c8e3d46bc280cf465"
exemplar-002-cycle-07.ome.tiff:
checksum: "sha1$7bb7694fdd7b8aad63f5b9d211f7c8cad751bd03"
exemplar-002-cycle-08.ome.tiff:
checksum: "sha1$2359e7573a78c9159c9553a4f9383fbb713e3b11"
exemplar-002-cycle-09.ome.tiff:
checksum: "sha1$27e371275cdf6d4f5c7e4519c214bbe1daa41afe"
exemplar-002-cycle-10.ome.tiff:
checksum: "sha1$d898c5e866b8b76968bb3d532f1560ee89583818"
FFP images:
element_tests:
exemplar-002-cycle-01.ome.tiff:
checksum: "sha1$f0df6c36228dc5f042f0df1dc5c6d705e5e5deae"
exemplar-002-cycle-02.ome.tiff:
checksum: "sha1$9f74a221a3602c02ed70b2e482faccb317c2b4c1"
exemplar-002-cycle-03.ome.tiff:
checksum: "sha1$12c8d1038049d5871509dbbaebede7e7f18b9311"
exemplar-002-cycle-04.ome.tiff:
checksum: "sha1$e85947ec53cab28fb419ece1a8f635dc3371ab8c"
exemplar-002-cycle-05.ome.tiff:
checksum: "sha1$2bd296285a2cf4b178d81fcc8aa477fd3bd0e1ef"
exemplar-002-cycle-06.ome.tiff:
checksum: "sha1$0ba1edc3d3374afc73fa0d082ed32d7a3f657fb1"
exemplar-002-cycle-07.ome.tiff:
checksum: "sha1$da4e1277eb29a54ebd3a77e0541e46bbf3549cb0"
exemplar-002-cycle-08.ome.tiff:
checksum: "sha1$8c0d07be76120a604ef3ef0b736a48c728f5f368"
exemplar-002-cycle-09.ome.tiff:
checksum: "sha1$50a0f1fbe8804116df1e37103e75d94613c8c38d"
exemplar-002-cycle-10.ome.tiff:
checksum: "sha1$16e6ea8454e2694d5b97e0a4d026c780fdc82098"
Dearray images:
element_tests:
'1':
checksum: "sha1$52ea022a20eae280b4a1e530c2fa935b3997f6e4"
'2':
checksum: "sha1$4cf03d453c85376990fc73fa230fd995ec13bbfa"
'3':
checksum: "sha1$30115bc8f70b7591be60a862478f0ea471074cc4"
'4':
checksum: "sha1$35d7282db64f555dc2525d1a8cc0ddee06a09f1a"
Dearray masks:
element_tests:
'1':
checksum: "sha1$68c156c4ba0222c49f5572c8095a0aa8f539e776"
'2':
checksum: "sha1$61a5e28f7919bc88af02f7f2a98502cfa2b0afec"
'3':
checksum: "sha1$eab508feac0fab918b61cc35cc2b4ceead10b390"
'4':
checksum: "sha1$a01e721c8e17bff6117a1baa958962ef67c296f1"
Nuclear mask:
element_tests:
'1':
checksum: "sha1$ef452b6469434bdd97564943857a657718a2531e"
'2':
checksum: "sha1$49530cf926c567093c05d6737cfc79ee99a4aa51"
'3':
checksum: "sha1$da2fccd91cae0534e7cf8357a21b0255d666f2f3"
'4':
checksum: "sha1$8f21ef92cb65a1b90e70e063406c6699ee96d66e"
Converted image:
element_tests:
'1':
checksum: "sha1$9f1ae4e597b4e1aa2b2cfe2cb40c221018d2e0aa"
'2':
checksum: "sha1$2403f38f6c70cb1254779d07a8a849310cc1b59a"
'3':
checksum: "sha1$c259b769dae0ad68d0f17f2ebb3c39e41f4926df"
'4':
checksum: "sha1$c7cbd3200933b34b0cd716f7db57d4a8eeb6cf8a"
Primary Mask Quantification:
element_tests:
'1':
checksum: "sha1$8ff199897999fe76eab5869f2772ec1bf25b9d34"
'2':
checksum: "sha1$2a96622b6f0d286f4a1ff953beb07159e4ddf7b6"
'3':
checksum: "sha1$b8ea79a00812bfd529751d3393813d24f3631d78"
'4':
checksum: "sha1$b4fc4b174fcd3f1e76cdf713b26aa4644612d0cd"
Renamed image:
element_tests:
'1':
checksum: "sha1$4e2a0aa8cc2f19a44b4174c62b7e4fbed0f2aca4"
'2':
checksum: "sha1$74c0134e386483e1c8c469352c873f3c26c0a903"
'3':
checksum: "sha1$58f27b8a11b69690a680edeabe553871cd2e4810"
'4':
checksum: "sha1$927f2a9c88c0ffe8785971b2b5a1f32389c17c4f"
Anndata feature table:
element_tests:
'1':
checksum: "sha1$3bd5d32b16303ee9f7b6747cfcb73d43ad8e5920"
'2':
checksum: "sha1$ae1063a0c4d59601a803bec625917b80c2fe7a26"
'3':
checksum: "sha1$b9390f8a00b118f9f571d4e02872218a7035a41b"
'4':
checksum: "sha1$f8a6b1ccbd91e070ecfd24fdee70c49409e197f1"
Phenotyped feature table:
element_tests:
'1':
checksum: "sha1$10e08ed26ab050644873c08a7103cb8c1058a1c5"
'2':
checksum: "sha1$bdfd5b17622c6f79524b6fb890ff04caa3df5847"
'3':
checksum: "sha1$5e8d42cb9b9e67408c4cc9f974017bf19a55e8a0"
'4':
checksum: "sha1$f2a0b74f7a458c1a308c08ba680b54a736e82f4f"
Vitessce dashboard:
element_tests:
'1':
checksum: "sha1$01d07533774decd31471898e2d60da8c2c06ab82"
'2':
checksum: "sha1$8732e27e35d37ef18e780de4459a40a0e9662c5e"
'3':
checksum: "sha1$84ad8675605be1b209a751870b21d67cc8022727"
'4':
checksum: "sha1$aff677eb4bf6bf0765e175d758b9b27de603d8ea"
Loading
Loading