Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

vehicle drift #2

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 20 additions & 5 deletions control/InnerLoop.m
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,8 @@
e_r = e_x(2);
e_Ux = e_x(3);

beta_eq = pars.beta_eq;

% Compute constants
[k1,k2] = Compute_ks(x(3), pars);

Expand All @@ -46,16 +48,22 @@
FxR_des = max(FxR_des, 0);

% Compute rear lateral force based on current state
% FyR_des = a*m/L*r*Ux; % Page 42 of Thesis - is this valid for normal use?
alphaR = atan(beta - b/Ux*r);
FyR_des = Fiala('rear', pars.CaR, pars.mu, pars.FzR, FxR_des, alphaR);
% FyR_des = a*m/L*r*Ux; % Page 42 of Thesis - is this valid for normal use?
% alphaR = atan(beta - b/Ux*r);
% FyR_des = Fiala('rear', pars.CaR, pars.mu, pars.FzR, FxR_des, alphaR);
% FyR_des should be calculated based on the saturation condition
if beta_eq < 0
FyR_des = sqrt((mu*FzR)^2 - FxR_des^2);
else
FyR_des = - sqrt((mu*FzR)^2 - FxR_des^2);
end

% Compute desired front lateral force
FyF_des = 1/k1 * ( k2 * FyR_des - K_beta^2 * e_beta - K_beta * r_eq - ...
(K_beta + K_r) * e_r );

% Compute desired steering angle if this is possible
if FyF_des < pars.mu*pars.FzF
if abs(FyF_des) < pars.mu*pars.FzF
% Compute desired steering angle
delta_des = FyF2delta(x, FyF_des, pars);
success = true;
Expand All @@ -79,11 +87,18 @@
e_beta = e_x(1);
e_r = e_x(2);

beta_eq = pars.beta_eq;

% Compute constants
[k1,k2] = Compute_ks(x(3), pars);

% Compute desired front lateral force - saturated
FyF_des = mu * FzF;
% FyF_des = mu * FzF;
if beta_eq < 0
FyF_des = mu * FzF;
else
FyF_des = - mu * FzF;
end

% Compute desired rear lateral force
FyR_des = 1/k2 * (k1 * mu * FzF + K_beta^2 * e_beta + K_beta * r_eq + ...
Expand Down
32 changes: 22 additions & 10 deletions simulation/GetParameters.m
Original file line number Diff line number Diff line change
Expand Up @@ -6,9 +6,12 @@
pars.dt = 1e-2; % seconds

%% Initial state and control
pars.x0 = [(-20.44+20.44+40)*pi/180; % Beta
0.600+0.2; % r
8+3]; % Ux
% pars.x0 = [(-20.44+20.44+40)*pi/180; % Beta
% 0.600+0.2; % r
% 8+3]; % Ux
pars.x0 = [0*pi/180; % Beta
0; % r
5]; % Ux
pars.u0 = [-12*pi/180;2293];
pars.vs0 = [0;0;0]; % Initial vehicle position and orientation

Expand All @@ -28,17 +31,26 @@
pars.FzR = pars.a*pars.m*pars.g/pars.L; % N

%% Equilibrium point - hard coded
pars.delta_eq = -12*pi/180; % rad
pars.Ux_eq = 8; % m / s
% pars.delta_eq = -12*pi/180; % rad
% pars.Ux_eq = 8; % m / s

pars.beta_eq = -20.44*pi/180;% rad
% pars.beta_eq = -20.44*pi/180;% rad
% pars.beta_eq = -21.35*pi/180;% rad
pars.r_eq = 0.600; % rad / s
% pars.r_eq = 0.600; % rad / s
% pars.r_eq = 0.5061; % rad / s
pars.FxR_eq = 2293; % N
% pars.FxR_eq = 2293; % N
% pars.FxR_eq = 2290; % N
pars.FyF_eq = 3807; % N
pars.FyR_eq = 4469; % N
% pars.FyF_eq = 3807; % N
% pars.FyR_eq = 4469; % N

pars.delta_eq = 12*pi/180; % rad
pars.Ux_eq = 8; % m / s

pars.beta_eq = 20.44*pi/180; % rad
pars.r_eq = -0.6; % rad / s
pars.FxR_eq = 2293; % N
pars.FyF_eq = -3807; % N
pars.FyR_eq = -4469; % N

pars.x_eq = [pars.beta_eq; pars.r_eq; pars.Ux_eq];

Expand Down